Soil Management Zone Determination By Yield Stability Analysis And Classification

Michael S. Cox¹ and Patrick D. Gerard² ¹Department of Plant and Soil Sciences, Mississippi State University ²Department of Applied Economics & Statistics, Clemson University

Introduction

Identifying soil management zones within a field has traditionally been a hurdle when applying precision agriculture practices to a crop production system. Crop yields typically vary over space and time, thus determining consistent yield patterns that may reflect soil influences can be difficult. One approach is to use long-term yield data to attempt to identify yield patterns. Blackmore (2000) proposed a simple, empirical method for classifying stable vield areas of a field. Discriminant analysis can then relate vield classes to soil or topographical factors. The resulting function determines what variables may be used to classify a location and then predict yield behavior where yield data may be limited. The combination of spatiotemporally stable yield classes and discriminant analysis to determine which soil-topographical properties separate those yield classes can give producers and agronomists insight into developing efficient and effective soil management zones.

Objectives

- Classify consistently low, average, and high yield zones

- Determine if soil/topographical properties differed among zones

- Determine which soil/topographical properties could classify field locations

Results

Stable vield classification zones of the South. North. and East Fields

North

+ Soil Sample Locations Yield Zones:
Consistently High,
Consistently Average,
Consistently Low

Materials and Methods

Yield Zone Determination

-Point-yield data for four years were spatially joined

-Individual yearly data normalized

-Coefficient of variation (CV) determined across years. -Zones

-CV < 30 - consistent - High (normalized average >120) (CH)

- Average(80 < normalized average < 120) (CA)

- Low (normalized average < 80) (CL)

Soil/Topography Characterization

-Analyzed for Ca, Mg, K, P, Zn, pH, total C, total N, texture, elevation, slope, and plan and profile curvature.

Statistics

- -ANOVA soil/topographical property differences between vield groups
- -Stepwise Discriminant Analysis soil/topography/vield group relationships.
- -Discriminant Analysis develop and cross-validate soil variable classification function

Soil and topographical parameters that were significantly different between yield zones in South, North, and East fields.

Field	Soil/Topography Properties						
South	Mg	pН	% Sand	% Clay	Elevation		
North	Mg	pН	K	% Sand	% Clay	Elevation	
East	Ca	Mg	pН	Total C	% Sand	% Clay	Slope

Soil and topographical parameters affecting yield for the South, North, and East fields.

Field	So	il Factor	S	Topographical Factors		
South North	Clay Sand	Sand K	Mg pH	Slope	Plan Curvature	
East	pH	Clay	p.,			

Cross-validation classification accuracies of the linear discriminant functions developed for soil sampling positions in the South, North, and East fields.

East

	Predicted Yield Class						
Actual Yield Class	Consistent- High	Consistent-Average	Consistent-Low				
	% Classification						
		South					
Consistent- High	81.9	18.2	0.0				
Consistent-Average	23.5	70.6	5.9				
Consistent-Low	0.0	33.3	66.7				
		North					
Consistent- High	87.5	10.0	12.5				
Consistent-Average	10.0	70.0	20.0				
Consistent-Low	0.0	16.7	83.3				
		East					
Consistent- High	100.0	0.0	0.0				
Consistent-Average	10.0	60.0	30.0				
Consistent-Low	0.0	16.7	83.3				

Selected References

Blackmore, S. 2000. The interpretation of trends from multiple yield maps. Computers Electron, Agric, 26:37-51

This paper was recently published as:

Cox, M.S. and P.D. Gerard, 2007 Soil Management Zone Determination by Yield Stability Analysis and Classification. Agron. J. 99:1357-1365