HALOPHYTIC TURFGRASS MAINTAINS QUALITY WHEN IRRIGATED WITH SALINE WATER

Ghazi Abu Rumman¹, Ed Barrett-Lennard^{1,2}, Timothy D. Colmer¹

1School of Plant Biology, Faculty of Natural and Agricultural Sciences; 2Center for Ecohydrology, DAFWA & The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Background

Many towns in the Australian "wheat belt" have shallow saline groundwater. Can this saline water be used to irrigate turfgrass?

Approach

Study of salt and water dynamics in the root zone, and the comparative physiology of halophytic (*Distichlis spicata, Sporobolus virginicus* and *Paspalum vaginatum* vs. a non-halophytic turfgrass (*Pennisetum clandestinum*), for plots irrigated with fresh or saline water, under Mediterranean-type climate.

Salt accumulation in soil in the first year

- Salinity of applied water was 13 dS m⁻¹ (1/3rd of sea water)
- 2. Salinity (EC_e) in root-zone during summer reached the same level as in the irrigation

water (EC_w) then declined during winter to values no higher than 3% seawater

- 1. Turf colour assessed by using chromameter every two weeks
- 2. Data shows 3% improvement in greenness of *Distichlis* when

irrigated with saline water whereas 11.4% decline in *Pennisetum*

- 1. Distichlis maintains low Na⁺ concentration in leaves
- 2. Na/K ratio is 6 fold more in *Pennisetum* (non-halophytic species) compared with *Distichlis* (halophytic species)
- 3. K+ concentration didn't differ significantly in between the

halophytic and non-halophytic species

- 1. Na⁺ concentration in leaf tissues increased 4.5 fold more in non-halophytic grass compared with a halophytic grass.
- 2. The colour of Distichlis improved through the use of saline irrigation water.
- 3. With the non-halophytic turfgrass colour declined when irrigated with saline water.
- 4. The colour of non-halophytic turfgrass recovered during winter season when salts were leached out of the surface soil by rain.

