

Composting Effects on Intensively Cultivated Low Organic Matter Soils in Southeast Idaho G.E. Woodward¹, J.D. Williams¹, B.D. Willis¹, and B.G. Hopkins² ¹Brigham Young University-Idaho, Rexburg, ID and ²Brigham Young University, Provo, UT

INTRODUCTION

- •Long term cultivation of soils reduces the amount of organic matter (OM) resulting in lower soil productivity (Balesdent et al., 2000).
- •Studies have shown that compost additions have increased soil OM in cultivated soils (Porter et al., 1999).
- Increased OM improves:
 - •Soil structure for rooting and water infiltration (Tester, 1990).
 - •Water holding capacity to avoid drought stress (Tester, 1990).
 - •Soil fertility from mineralization of composting materials.
 - •Yield and quality for all crops in a rotation (Porter et al., 1999).

Objectives of this study were:

- •Compare soil OM, total carbon (C), total nitrogen (N), and fertility of uncultivated (native) soils and intensively cultivated (plot) soils.
- Compare yields and yield quality of composted and non-composted (control) treatments.

MATERIALS AND METHODS

- Plot and native soils were a Blackfoot silt loam (BSL; Fine-loamy, mixed, frigid Fluvaquentic Haploxeroll) and a Pocatello variant (PV; Coarse-silty, mixed, frigid Typic Xerothents).
- •Soil samples for native and plot soils were taken to a depth of 15 cm in the spring before planting.
- •Native soil samples were taken from areas that had never been cultivated.
- Crop rotation for the compost study was a 4 year rotation of wheat-wheatalfalfa-potatoes.
- Compost treatments consisted of composted steer feedlot manure at a rate of 6.7 Mg ha⁻¹ for wheat and alfalfa and 11.2 Mg ha⁻¹ for potatoes.
- •Soils were tested for OM, total N, total C, organic C (without CaCO₃), nitrate (NO_3 -N), and phosphorus (P).
- •Yields were calculated using standard moisture levels for wheat and alfalfa $(135 \text{ and } 120 \text{ g kg}^{-1}, \text{ respectively})$ and total weight for potatoes.
- •ANOVA was performed using Excel 2007 Analysis Toolpak.

Table 1. Organic matter (OM), total Carbon (C), organic C, total nitrogen (N), C:N ratio, nitrate (N0₃-N), and phosphorus (Olsen-P) for the Blackfoot silt loam (BSL), Pocatello variant (PV), and plots (n = 40).

		N	<i>,,</i> I	. /			
Soil	OM	Total C	Organic C		C:N	NO ₃ -N	Olsen-P
		g kg ⁻¹					ha ⁻¹ —-
BSL	46.4	26.4	25.0	1.54	16.2:1	63	87
PV	33.9	20.7	12.5	1.02	12.3:1	28	29
$BSL\operatorname{-}PV^\dagger$	43.3	25.0	21.9	1.41	15.2:1	54	73
Plots	19.3	9.5	6.4	0.59	11.8:1	35	88

[†]Calculated as a weighted average based on percent of BSL and PV soils in the plot area (75% BSL and 25% PV).

Table 2. Comparison of wheat, alfalfa, and potato yield data between the control and composted treatments.

Treatment	Wheat [‡]	Alfalfa	Potatoes	
		— Mg ha ⁻¹ —		
Control (mean)	4.36	6.71	22.6	
Compost (mean)	4.50	6.19	22.7	
Control x Compost	NS [§]	NS	NS	

[‡]Wheat data were combined for both wheat rotations, because it is the first year of the study. $^{\$}NS$, not significantly different at an alpha = 0.05.

TABLES

- which is a result of 75+ years of cultivation.
- tile, and healthy than the cultivated plot soils.

Compost vs. Control Treatments

- post treatments (Table 2).

•Cultivated plot soils have less OM than surrounding native soils.

- Tillage & Research 53:215-230.
- fects on potato: 1. Soil properties, tuber yield, and quality. Agron. J. 91:416-425.
- soybean, and wheat and soil fertility. Agron. J. 96:531-537.
- 831.

RESULTS AND DISCUSSION

Native Soils vs. Plot Soils

Native soils had 15 - 27 g kg⁻¹ more OM than the plot OM average (Table 1)

•Total C, Organic C, and Total N were higher in the native soils than the plot soils (Table 1) which suggest that the native soils are more productive, fer-

•Nitrate and P levels where similar among soils except BSL had higher NO_3 -N levels and PV had lower P levels. High P levels for the plot soils was expected because of a history of heavy P fertilization (Table 1).

•Native soils had a greater C:N ratio than the cultivated plot soils (Table 1), but the C:N ratios for all soils suggested net N mineralization.

•No significant yield differences were observed between the control and com-

Studies have shown that composting may take 3 - 5 years to show yield and yield quality differences (Singer et al., 2004; Porter et al., 1999)

•Yield data were related to preseason NO_3 -N samples suggesting residual N and past management may be influencing our results (data not shown).

CONCLUSION

Compositing cultivated soils has potential to improve soil productivity by increasing soil OM content which will improve soil structure and fertility.

REFERENCES AND ACKNOWLEDGEMENTS

• Balesdent, J. C. Chenu, and M. Balabane. 2000. Relationship of soil organic matter dynamics to physical properties and tillage. Soil

• Porter, G.A., G.B. Opena, W.B. Bradbury, J.C. McBurnie, and J.A. Sisson. 1999. Soil management and supplemental irrigation ef-

• Singer, J.W. K.A. Kohler, M. Liebman, T.L. Richard, C.A. Cambadella, and D.D. Buhler. 2004. Tillage and compost affect of corn,

• Tester, C.F. 1990. Organic amendment effects on physical and chemical properties of a sandy soil. Soil Sci. Soc. Am. J. 54::827-

• We thank BYU-Idaho student research fund for funding this research, and Bruce Webb and BYU soil analysis lab staff for their help.