Mechanism of the decrease in exogenous-toxin protein of transgenic Bt rice grown in elevated CO₂—Dilution effect hypothesis

Fa-Jun Chen¹, Gang Wu², Megha N. Parajulee³, Feng Ge⁴

¹Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China, ²Biological Science and Technology, Wuhan University of Technology, Wuhan 430070, China, ³Texas Agricultural Experiment Station, 1102 East FM 1294, Lubbock, Texas 79403, USA, and ⁴Chinese Academy of Science, Beijing 100080, China; E-mail: fajunchen@njau.edu.cn

Introduction

- Biotech crops has been adopted worldwide to control lepidopteran insect pests (James 2005, 2006).
- In China,
 - (1) the damage caused by *Helicoverpa armigera* has been greatly alleviated in recent years due, in part, to the adoption of transgenic Bt cotton (Men et al. 2003).
 - (2) some varieties of transgenic Bt rice (e.g., KMD-1 & KMD-2) have been bred, which can been effectively control the occurrence of *Chilo suppressalis* (Wu et al., 2001).
- Elevated CO₂ results in marked impacts on plant physiology and secondary metabolism (e.g., Luo et al. 1999).
 - (1) significant increases in photosynthesis, plant biomass and yields and etc.
 - (2) changes in production of secondary metabolites (Wu et al., 2007), e.g., promoting the manufacture of Cbased secondary metabolites (e.g., total phenolics, gossypol, condensed tannin) over N-based ones (Bryant et al., 1983; Coviella et al. 2002; Chen et al. 2005; Wu et al. 2007).
- Transgenic Bt cotton appears to be especially responsive to CO₂, e.g., significant decrease in exogenous Bt toxin content (Coviella et al. 2002; Chen et al. 2005; Wu et al. 2007).

Impacts of Elevated CO₂ on Transgenic Bt Rice

- It is presumed that
 - Elevated CO₂ can alter the Bt rice

Effects of elevated CO_2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm

- GK-12= transgenic Bt cotton cultivar; Simian-3=non-transgenic cultivar [same parental line].
- Different lowercase letters indicate significant differences between CO₂ treatments within cotton variety (LSD test; df = 1,4; P<0.05).

Ecological Question?

How about the mechanism of transgenic Bt cotton grown in elevated CO₂ owing to the marked decrease in exogenous Bt toxin content?

Ecological Risk of Transgenic Bt Rice in Elevated CO₂

- Resistance of transgenic Bt rice against target and non-target herbivorous insects in elevated CO₂.
- Target resistance may be reduced owing to the subsequent decrease of Bt toxin in elevated CO₂?
- Non-target resistance may be enhanced owing to the subsequent increases of secondary defense chemicals in

Question 1: Dilution Effect

- Hypothesis 1: If the exogenous Bt gene expression isn't affected for transgenic Bt crops grown in elevated CO₂
 - Positive correlation should be existing between Bt toxin amount (ng) per plant and biomass (g) per plant
 - Hence, if significant increase in biomass occurs in transgenic Bt crops grown in elevated CO₂, total amount of Bt toxin per unit area increases
- Hypothesis 2: If the exogenous Bt gene expression is inhibited for transgenic Bt crops grown in elevated CO₂
 - Significant correlation should be shown between the increase/ decrease (%) in Bt toxin amount per plant and the increase (%) in tissue biomass per plant for Bt crops grown in elevated CO₂

Question 2: Bt Gene Expression

- The exogenous gene silencing is the key risk causing the reduction in exogenous toxin expression for transgenic crops, owing to the methylation of the special 35S promoter and the Bt gene (Finnegan & McElroy 1994).
- How about the exogenous Bt gene silencing for the Bt crops grown in elevated CO₂, whether it results in the significant decrease in Bt toxin in elevated CO₂?

Question 3: Nitrogen Nutrition

growth (Huang et al., 2004).

 Hence, ultimately the phenotype allocation to plant chemical components of Bt rice, which may in turn, affect the plant-herbivore interactions (Wu et al. 2007).

What about the Bt toxin expression of Bt rice grown in elevated CO₂? ---Significant decrease in content and amount? elevated CO₂?

Three Aspects Presumed

(1) Plant growth - Dilution effects (Hägele & Martin 1999). Do increased carbohydrates of Bt crops, caused by elevated CO₂, dilute the Bt toxin content in plant tissues?
(2) Bt gene expression may be inhibited (Xia et al. 2005). Methylation of the special promoter (35S) and Bt gene may be enhanced when Bt crops is grown in elevated CO₂.
(3) Plant physiology - Nitrogen nutrition (Stitt & Krapp 1999). Nitrogen metabolism of transgenic Bt crops may be inhibited under elevated CO₂, owing to the N-deficiency in the soil resulted by increased N uptake to compensate the lower leaf-N metabolism. Nitrogen uptake can be enhanced by roots of transgenic Bt crops grown in elevated CO₂, which can result in a N-deficiency (Stitt & Krapp 1999).
The N-deficiency also limits nitrogen metabolism (e.g., assimilation and reallocation) and Bt gene expression for transgenic Bt crops grown in elevated CO₂ (Stitt & Krapp 1999).
How about the nitrogen metabolism (including some key enzymes, e.g., GS, Fd-GOGAT or NADH-GOGAT, GDH) of transgenic Bt crops grown in elevated CO₂?

In this study, dilution effect hypothesis was tested by measuring Bt-toxin expression (content and total amount) in combination with plant biomass of transgenic Bt rice grown in open-top chambers, under ambient CO₂ and elevated CO₂

Materials & Methods

- OTCs: The experiment was conducted in six open-top chambers, 2.5 m tall × 4.2 m in diameter (Chen et al., 2005), in Sanhe County, Hebei Province, China (35°57′ N, 116°47′ E). Three OTCs were used for each CO₂ treatment, i.e., 375 and 750 µl/l CO₂.
- Rice cultivar: The transgenic Bt rice cultivar KMD-2 (expressing Cry1A(b) genes from Bacillus thuringiensis Berliner var. kurstaki)(Shu et al., 1998) was used.
- Growth condition: The seeds of KMD-2 were planted in white plastic pots (45 cm high × 35 cm in diameter) filled with 8: 3:1 (by volume) loam : cow dung : earthworm frass, with 60 seeds per pot. Thirty pots with 30 stems per pot were placed randomly in each chamber and re-randomized every other day to minimize positional effects. Pure CO₂ mixed with ambient air was supplied to the chambers throughout the seedling stage, and enough water was given to every pots.
- Plant growth: The index of biomass (g dry weight per stem) was used to indicate plant growth. In this study, total biomass was measured on the 50d and 100d after Bt rice planting (ab. DAP), respectively.
- Bt toxin protein: On the 50d and 100d after Bt rice planting, the content of Bt toxin protein was respectively analyzed using ELISA (Chen et al., 1999). Simultaneously, the total amount (ng) Bt toxin protein was gained with the total biomass (g) multiplying the respective Bt toxin protein content (ng/g).
- Dilution effect test:

(1) Hypothesis 1: Bt gene expression isn't affected for Bt rice grown in elevated CO_2 .

--- Significant increase in Bt toxin amount per stem must be showed in elevated CO₂ compared with ambient CO₂. And there must be positive correlation between the increase % in Bt toxin amount per stem and the increase % in biomass per stem.

(2) Hypothesis 2: Bt gene expression is inhibited for Bt rice grown in elevated CO₂. --- No change (even decrease) may be

shown in Bt toxin amount per stem when transgenic Bt rice grow in

Figure 2 Bt toxin content of Bt rice grown in ambient and elevated CO_2 for 100 days after planting. Different lowercase letters indicate significant differences between CO_2 treatments (LSD; df = 1,10; P<0.05).

Figure 3 Biomass per stem of Bt rice grown in ambient and elevated CO_2 for 50 days (A) and 100 days (B) after planting. Different lowercase letters indicate significant differences between CO_2 treatments (LSD; df = 1,4; P<0.05).

Results

- **Bt toxin content:** CO_2 level significantly affected Bt toxin content of the root ($F_{1,10}$ =31.2, P=0.0002) and the aboveground tissues ($F_{1,10}$ =16.1, 0.0025) when Bt rice grew for 50 days after planting. And significant decreases in Bt toxin content were shown in elevated CO_2 compared with ambient CO_2 (P<0.05; Fig.1). Moreover, significant effects of CO_2 level were also indicated in the tissues of flag leaf ($F_{1,10}$ =12.7, P=0.0052), leaf($F_{1,10}$ =24.4, P=0.0006) and leaf sheath ($F_{1,10}$ =5.1, P=0.048), and shoot ($F_{1,10}$ =74.2, P=0.0001), with significant decreases in Bt toxin content of 100DAP Bt rice grown in elevated CO_2 in contrast to ambient CO_2 (P<0.05; Fig.2).
- Biomass: Elevated CO₂ significant increased the root (F_{1,4}=126.8, P=0.0001), aboveground tissues (F_{1,4}=12.0, P=0.026) and total plant biomass (F_{1,4}=12.7, P=0.024) of Bt rice grown for 50 days after planting, but didn't affect the respective biomass of Bt rice grown for 100 days after planting. Significant increases in biomass were found in the root, aboveground tissues and total plant of 50DAP Bt rice grown in elevated CO₂ relative to ambient CO₂ (P<0.05; Fig.3A).
- Bt toxin amount: CO₂ level significantly increased Bt toxin amount per stem in the root (F_{1,4}=111.4, P=0.0005), aboveground tissues (F_{1,4}=9.9, P=0.035) and total plant (F_{1,4}=15.7, P=0.017) of 50DAP Bt rice. And significant increases in Bt toxin amount per stem of the above tissues were indicated when Bt rice grew in elevated CO₂ compared ambient CO₂ (P<0.05; Fig.4A).

Elevated CO_2 didn't increase the Bt toxin amount per stem in the root, aboveground tissues and total plant when Bt rice grew for 100 days after planting. On the contrary, marginal decreases in Bt toxin amount per stem were shown in the above tissues of Bt rice in elevated CO_2 compared with ambient CO_2 (P>0.05; Fig.4B)..

Correlation analysis: Correlative relationships between the changes in Bt toxin amount per stem and tissues biomass per stem were examined using Pearson's correlation. The increases in Bt toxin amount of the root and aboveground tissues were positively correlated with the increases in root and aboveground tissues' biomass when Bt rice grew for 50 days after planting (Table 1). While, only one significantly negative correlation were found in the aboveground tissues between the decrease in Bt toxin amount and the biomass when Bt rice grew for 100 days after planting (Table 1).

Conclusion

- The dilution effects were shown in under- (i.e., root) and aboveground tissues of Bt rice grown in elevated CO₂ for 50 days after planting. And during this period, the Bt gene expression isn't affected in Bt rice grown in elevated CO₂.
- The dilution effects weren't shown in plant tissues of Bt rice grown in elevated CO2 for

elevated CO_2 relative to ambient CO_2 . And there must be negative correlation between the decrease % in Bt toxin amount per stem and the increase % in the increase % in biomass per stem.

Data analysis: All data were analyzed with a general linear model procedure (SAS Institute, 1996). One-way ANOVA was used to analyze the effects of elevated CO₂ on plant biomass, and content and total amount of Bt toxin protein of transgenic Bt rice. And LSD test was used to separate the means between treatments at P<0.05. And Pearson correlations were also used to analyze the relationship between the measured indexes. **Figure 4** Bt toxin protein amount per stem of Bt rice grown in ambient and elevated CO_2 for 50 days (A) and 100 days (B) after planting. Different lowercase letters indicate significant differences between CO_2 treatments (LSD; df = 1,4; P<0.05).

Table 1 Pearson correlation between the changes (%) of Bt toxin amount per stem and the changes in tissue biomass per stem, when transgenic Bt rice grew in elevated CO_2 relative to ambient CO_2

		Changes in tissue biomass per stem	
		Root	Aboveground tissues
50 days after planting (DAP)			
Changes in Bt toxin content	Root Aboveground tissues Total plant	1.0000 (0.0024)**	1.0000 (0.0013)**
100 days after planting (DAP)			
Changes in Bt toxin content	Root Aboveground tissues Total plant	-0.93 (0.25)	-0.9998 (0.013)*
Data are the Coefficients (P values) of the Pearson Correlation. * P<0.05, ** P<0.01.			

100 days after planting. And during this period, the Bt gene expression is inhibited for Bt rice grown in elevated CO_2 .

Suggestions

- Some cultural practices could be carried out to improve the Bt-gene expression of transgenic Bt cotton, especially in elevated CO₂, e.g.,
 - a) spraying special demethylation reagents (e.g. 5-azaC),

b) additional nitrogen-fertilization supply.

- The target receptors (e.g., cadherin-like protein (Hara et al., 2003; Wang et al., 2004)) of the target insect pests should be assayed especially in elevated CO₂ to exactly assess the resistant ability of transgenic Bt crops.
- This study is supported by the International Foundation for Science (C/4164-1), the National Natural Science Foundation of China (30700527), the State Key Laboratory of Integrated Management of Pest Insects and Rodents (Chinese-IPM-0601) and the Innovation Foundation of Science and Technology for the Youth of Nanjing Agricultural University (KJ07003).