Diversity in Tolerance of Soybean (Glycine max L. Merr.) Germplasm to Soil Waterlogging

Tran Thi Cuc Hoa¹, Tara VanToai², Nguyen Thi Ngoc Hue¹, Henry Nguyen³, Grover Shannon^{3,4}, Bert Bishop⁵

¹Cuu Long Delta Rice Research Institute, Cantho, Vietnam; ²USDA-ARS, Soil Drainage Research Unit, Columbus, Ohio USA; ³National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, USA; ⁴University of Missouri, USA; ⁴University of Missouri, USA; ⁴University of Missouri, USA; ⁵Ohio Agricultural Research and Development Center, Oniversity of Missouri, USA; ⁴University of Missouri, USA; ⁴Univ

Introduction

Screen House Experiments

Monoculture of irrigated paddy rice, common in the Mississippi delta of the United States and in Asia, diminishes soil nutrients, compacts soils, contaminates water supplies, and increases pests and diseases. While the addition of soybean (*Glycine max* L. Merr.) crops to this cropping ecosystem can attenuate many of these problems, the soybean plants must be tolerant to waterlooging.

Genetic variability for flooding tolerance exists among soybean cultivars (VanToai et al., 1994). In a three-year field screening of 360 soybean cultivars for tolerance to severe soil waterlogging, Shannon et al. (2005) reported a 40% reduction in yields of the flood-tolerant group versus the 80% reduction in yields of the flood-susceptible group.

In some cases, plants that survive flooding die after the stress is removed (Sullivan et al., 2001). The post-flooding period can be as injurious as flooding itself, in part because of senescence-associated processes initiated in response to the original stress. Plants which are tolerant to flooding not only need to survive or grow during the stress but also need to recover after the stress is removed. Yield losses are the result of plant death due to diseases and physiological stress and reduced root growth, shoot growth, nodulation, nitrogen fixation, photosynthesis, biomass accumulation, and stomatal conductance (Oosterhuis et al., 1990; VanToai et al., 1994 and 2001).

Since current U.S. soybean cultivars come from a narrow genetic base (Gizlice et al., 1994 and 1996), soybeans with better waterlogging tolerance may be found in cultivars and landraces from other countries. Soybeans in Southeast Asia are often cultivated under wet conditions and could have high tolerance to soil waterlogging. In this study, we determined the responses of 22 soybean cultivars, landraces and plant introductions from Vietnam to waterlogging at the R2 growth stages under field and screen house conditions. Comparative responses of soybean to flooding in the two environments were documented to verify if screening under screen house conditions can model field tests. Seed yield, and yield components after recovery from flooding stress were quantified and their correlation with plant growth analyzed for each of the 22 soybean genotypes.

Materials and Methods

Plant Materials

Origin

germp in, nat

Vietna

tolera

field e

Long [

Institu

2005

The study was conducted with 22 soybean genotypes developed in, native to, or introduced into Vietnam. They include landraces from Vietnam and Cambodia, plant introductions from Taiwan or unknown origin and cultivars developed by traditional or mutation breeding (Table 1).

				Screen House		
Table 1				Field		
	Genotype	Origin	SP2005		51,12005	5U2206
	Genotype	- Cright	CO*	R2WL Maturb	R2WL	R2WL
	DNOM 1	Landrace from Thonot district	90	77*	85	73
and maturity of 22	DNOM 3	Landrace from Thonot district	35	75	77	76
	DNOM 5	Landrace from Thonot district	87	73	77	78
plasm lines developed	MTD652-5	Cantho Univ. collection	87	76	84	78
Jaam intea developed	MTD676 ATE15-1	Cantho Univ. collection	84	78	84 74	75
the second se	ATF15-1 DT93	Southern Agric. Inst. collection	88	71	74	74
tive to, or introduced into	DT93 Nam Vang	From a cross of 821 (Vietnam) x 134 (Japan) released by Agric Univ No1, Landrace from Cambridge	84	60	70	74
	BR5-1	Inst of Oliseed Crops	83	74	78	74
am evaluated for flooding	BRD-1 HE 125	Hung loc Agric Res Inst	00	74	78	74
	MSB222	Pi of unknown origin		72	79	77
nce in screen-house and	DT94	From a cross of DT 84 x EC2004. Apric Genetics Inst	54	72	74	74
	HE 203	Hungloc Apric Res Inst- PI from Taiwan	24	77	74	75
experiments at the Cuu	96113	Pl of unkown origin	90	72	78	76
speriments at the Out	MTD176	Cantho Univ collection	87	72	74	75
Delta Rice Research	VND2	From Inst Oilseed Crops- unknown origin	83	72	70	76
Della Rice Research	HE.92	Hungloc Apric Res Inst, PI from Talwan	84	73	71	74
	GC90013-21-15-10	PI of unknown origin	87	72	72	74
ite, Cantho, Vietnam in	MTD654-2	Cantho Univ collection	85	76	78	74
	CL52111	Inst of Oliseed Crops collection		73	78	
and 2006.	CPAC358-7-6	Pl of unknown origin	80	74	78	77
unu 2000.	M 103	Released by Ag Univ.No. 1 by mutation breeding of V70	85	60	78 74	72
	ATF15-2	Southern Agric Inst collection	83	60	74	74
	-	Average		75	16	75
	"Control plants of su	mmer 2005 screen house and summer 2005 field experiments showed similar maturit	h)			

Plants of each of the 22 soybean genotypes were grown in the screen house of the Cuu Long Delta Rice Research Institute, Cantho, Vietnam in the spring and summer 2005. Seeds were planted in 22-cm pots at 4 seeds per pot filled with fumigated topsoil. After 15 days, seedlings were thinned to 2 plants per pot.

Waterlogging stress was imposed at the R2 growth stage by placing individual pots in 30-cm buckets and adding water to the outside buckets until 5 cm above the soil surface. Plants in the control treatment were watered to maintain normal growth and no stress. After two weeks, pots in the waterlogging treatments were drained and plants allowed to recover (Figure 1). Plants were grown to maturity and seed yield in grams per plant, plant height in cm (measured from the soil surface to the top of the plant), number of branches, number of reproductive nodes, number of pods per plants, number of seeds per pod and 100-seed weight were determined. Measurements were taken on individual plants within each pot (experimental unit) and the means calculated. Each treatment was replicated three times for each varietv.

Figure 1

Screen house experiment, summer 2005. A. Plants after one week of recovery from two-weeks of waterlogging. B. Close-up photo of one genotype. CON, control; WL-V4. waterloaging at the V4 stage: WL-R2. waterloaging at the R2 stage

Field Experiment

The field experiment was conducted in the spring of 2006 on two adjacent fields of Cuu Long Delta Rice Research Institute, Omon, Cantho, Vietnam (latitude 10°05' N and longitude 105° 42' E) with the same 22 genotypes. The control, non-flooded field had drainage ditches around and between replications, whereas the flooded field was surrounded by dikes. The genotypes were assigned in a randomized complete block design with three replications in each field. Plots were six rows 3.0 m long x 2.4 m wide and 0.4 m between rows. Seeds were hand-planted on 3 March 2006 at 3- 4 seeds per hill at the spacing of 20 cm within each row. After two weeks seedlings were thinned to 2 plants per hill. Fertilizer was applied at the rate of 60-60-30 kg NPK/ha. Weeds were controlled by herbicides and manual weeding. Pesticides for diseases and insect control were applied as needed.

Waterlogging application was imposed when the majority of soybean genotypes reached the R2 growth stage by pumping water to a depth of 10 cm above the soil surface lasting for a total of two weeks. At maturity, plant height, number of survived plants and seed yield were recorded.

Statistical Analysis

Statistical analyses were conducted using PROC GLM of SAS® PC for Windows Version 9.1.3 (SAS Institute Inc., Cary, NC) to compute the mean and examine varietal differences in plant height, seed yield and other plant growth parameters. If the variety effect from the Analysis of Variance was significant at p < 0.05, Least Significant Differences (LSD) were used to summarize differences among the genotypes.

A dependent variable "percent reduction from the control treatment" was calculated according to the formula: Percent reduction = [(control-waterlogged)/control] *100. To identify waterlogging-tolerant genotypes, the yield reduction due to waterlogging at the R2 stage of all genotypes was ranked in each of the three different experiments using the PROC RANK. The most tolerant (lowest reduction in yield) was assigned the score =1 and the least tolerant =22. The waterlogging tolerance index (WLTI) was devised by adding the ranking across three experiments. Pearson correlation analyses were conducted using the PROC CORR.

R	es	u	lts
R	es	u	π

Seed

waterl

index

genoty

descrit

		Field 2	Field 2006							
		Control	Spring	w			W	Control	WI	WL
Table 2	Genotype	Planthei		Height reduction (%)	Plant I (cr	neight	Height reduction (%)	Plant hei		Height reduction (%)
	DNOM 1	48.4	56.7	-35	64.2	72.9	-21	53.4	58.6	-18
Plant height of 22 soybean	DNOM 3	37.2	52.9 61.5	-113	40.2	49.3	-56 27	38.4	52.5 47.3	-96 -70
	DNOM 5 MTD652.5	69.4	61.5 56.2	-18	83.6	49.9	48	37.5	47.3	-70
genotypes of control and	MTD676	51.1	56.6	.21	68.6	49.9	40	45.3	57.4	-00
	ATF15-1	47.2	55.7	-38	48.8	46.7	9	36.0	46.6	-82
waterlogging treatments	DT93	58.6	68.3	-28	60.1	70.1	-28	38.4	56.2	-121
in screen-house and field	Nam Vang	51.8	67.2	-57	48.2	52.8	-20	38.9	51.3	-82
	BR5-1 HI 125	46.6 52.8	54.9 55.7	-38	46.7	48.1	-6	35.9 41.2	51.2 45.8	-119
experiments at the Cuu Long	HL125 MSBR22	52.8	53	-10	57.3	53.5	-5	41.2	46.8	-33
Delta Rice Research Institute.	N30622	44.6	nd		517	44.7	26	36.4	47.1	-90
Della Rice Research Institute,	HL203	34.6	48.7	-118	54.3	49.7	16	35.6	47.8	-96
Cantho, Vietnam in 2005 and	96113	21.6	29.3	-165	42.3	46.4	-23	27.1	35.0	-108
ounaid, victuan in 2000 and	MTD176	55	55.4	-1	79.6	52.9	42	57.3	65.1	-24
2006.	VND2 HI 92	25.8 48.8	37.2 53.8	-171	23.2	26.8	-67 31	25.3 35.9	31.7	-100
2000.	HL92 GC90013-21-15-10	48.8	33	-21	34.1	34.5	31	27.1	42.6	-52
	MTD654-2	62.8	68.7	-15	70.5	64.9	11	61.6	68.9	-19
	CPAC368-7-6	55.1	56.2	-4	47.4	47.1	1	32.1	49.6	-170
	M 103	49.6	51.4	-7	53.6	44.8	31	32.5	43.0	-99
	ATF15-2	51.4	nd		48.3	39	40	36.5	48.9	-93
	Average	47.7	53.6	-36	54.1	50.2	9	39.4	50.5	-74
	SD	12.1	10.4		13.9	10.3		9.7	10.8	

		een House	Field		Scre	en House			Field	Table 3
Genotype	_SP20	05 SU200			P2005		J2005		U2006	Table 3
Genotype		Waterlogg		CO	WL	CO	WL	CO	WL	
		urvival Plan				eld (g/pla		Seed y	rield (g/plot)	
DNOM 1	20	67	5	44.5	8.8	92.2	32.0	746.7	60.0	Survival and seed yield of 22
DNOM 3	60	67	0	53.0	32.9	96.4	41.5	339.1		
DNOM 5	80	50	7	61.8	48.9	95.4	29.9	622.3	141.7	soybean genotypes of control
MTD652-5	20	0	13	59.5	10.1	95.4	0.0	886.7	220.0	
MTD676	40	67	7	49.0	16.9	99.8	49.3	897.5	193.5	and waterlogging treatments
ATF15-1	80	84	13	56.3	51.9	88.8	35.3	286.0	150.0	
DT93	80	100	27	63.2	49.6	92.1	29.6	583.5	286.7	in screen-house and field
Nam Vang	100	100	28	54.7	54.6	69.8	36.4	653.6	240.0	experiments.
BR5-1	80	67	0	59.6	48.6	89.2	33.5	780.0		experiments.
HL125	60	84	5	69.1	31.6	101.8	61.0	435.8	30.0	
MSBR22	20	50	12	88.7	10.5	99.2	25.1	635.3	100.0	
DT94	0	67	13	70.3	0.0	99.7	26.3	689.6	222.5	
HL203	80	67	20	53.9	40.1	97.0	17.9	527.7	290.0	
96113	80	50	13	37.9	30.2	70.6	20.1	303.0	60.0	
MTD176	20	33	7	63.1	13.4	87.8	17.0	705.2	220.0	
VND2	100	100	20	51.9	51.8	58.5	36.3	342.4	140.0	
HL92	40	67	3	61.8	20.0	68.7	36.7	480.0	70.0	
GC90013-21-15-10	40	67	20	47.4	19.0	67.5	21.6	408.4	255.0	
MTD654-2	60	67	5	59.6	31.3	90.2	39.7	714.1	65.0	
CPAC368-7-6	40	67	5	71.1	20.4	90.6	45.4	590.5	225.0	
M 103	40	100	5	65.1	20.1	103.5	42.9	264.5	80.0	
ATF15-2	0	100	20	61.9	0.0	99.6	43.8	508.8	250.0	
Average	50	70	11	59.2	27.8	88.8	32.8	563.7	165.0	
SD	31	24	8	10.6	17.6	13.0	13.0	190.0	85.0	

			House	Field	Screen House		Field	
	Genotype	SP2005	SU2005	SU2206	SP2005	SU2005	SU2206	WLTI
Table 4		Seed yield Reduction (%)			Rank			
	VND2	0.2	37.9	59.1	1.5	1.0	6.0	9
	Nam Vang	0.2	47.9	63.3	1.5	4.0	8.0	14
	ATF15-1	7.8	60.3	47.6	3.0	11.0	3.0	17
vield reduction and	DT93	21.6	67.9	50.9	7.0	14.0	4.5	26
ogging tolerance	GC90013-21-15-10	60.0	68.0	37.6	12.0	15.0	1.0	28
ogging tolerance	CPAC368-7-6	71.3	49.9	61.9	16.0	5.0	7.0	28
(WLTI) of 22 soybean	HL203	25.6	81.5	45.0	8.0	21.0	2.0	31
	MTD676	65.5	50.6	78.4	13.0	6.0	14.0	33
pes calculated as	HL125	54.2	40.1	93.1	11.0	2.0	20.0	33
	HL92	67.6	46.6	85.4	14.0	3.0	17.0	34
bed in the text.	ATF15-2	100.0	56.0	50.9	21.5	8.0	4.5	34
	DNOM 5	20.8	68.7	77.2	6.0	16.0	13.0	35
	MTD654-2	47.5	55.9	90.9	10.0	7.0	18.0	35
	M 103	69.2	58.6	69.8	15.0	10.0	11.0	36
	96113.0	20.3	71.5	80.2	5.0	17.0	15.0	37
	BR5-1	18.5	62.5	100.0	4.0	12.0	21.5	38
	DNOM 3	37.9	56.9	100.0	9.0	9.0	21.5	40
	MTD176	78.7	80.6	68.8	17.0	20.0	10.0	47
	DT94	100.0	73.6	67.7	21.5	18.0	9.0	49
	DNOM 1	80.3	65.3	92.0	18.0	13.0	19.0	50
	MTD652-5	83.0	100.0	75.2	19.0	22.0	12.0	53
	MSBR22	88.1	74.7	84.3	20.0	19.0	16.0	55

		Table 5			Trait	Control Waterlogging						
					i rait	SH-SP05	SH-SU05	FD-SU06	SH-SP05	FD-SU06		
					Plant height	0.53**	0.51*	0.67***	0.18	SH-SU05 0.04	0.1	
Pearson	correlation	on coeffi	cients of		Branches	0.03	0.35	0.07	-0.13	0.23	0.1	
a a a d a d a b	al constate on t		the second second	- 1 -1	Repro nodes	0.32	0.58**		0.18	0.34		
seed yield	a with pi	ant neigi	nt and yi	eia	1-seed pods	-0.47*	-0.10		-0.26	+0.15		
compone	nt traits	of sovbe	an in co	ntrol and	2-seed pods	+0.30	0.14		0.09	0.35		
					3-seed pods	0.8***	0.36*		0.40*	0.65***		
waterlogo	ging trea	tments c	of screen	-house	Pods/plant	0.41*	0.41*	0.64**	0.34	0.65***	0.74***	
and field	ovnorim	onto			100-seed weight	0.33	0.27	0.14	0.29	0.28	0.30	
and neid	experim	cinto.			 significant at p significant at p significant at p 	5 ≤ 0.01						
Plant height	Height FD-CO Height SU-CO 0.702***	Height FD-CO Height FA-CO 0.851****	Height FD-R2 Height SU-R2	Height FD-R2 Height FA-R2 0.656**			Т	able	6			
Seed yield Weid-FLoco Weid-FLoco Yead-FLR2 Yead-FLR2 Feed yield Weid-FLoco Yead-FLR2 Yead-FLR2 Weid-Yead Yead-FLR2 Weid-FLR2 Pearson correlation coefficients of plant heigh and seed yield between field and screen-hous												

and seed yield between field and screen-house experiments.

USDA

Waterlogging for 2 weeks at the R2 stage reduced seed yield under field conditions between 37 and 100% (all plants dead). However, plants that survived flooding averaged 29% taller than control plants. Three genotypes, VND2, Nam Vang and ATF15-1 had the best waterlogging tolerance indexes (WLTI). These lines provide new germplasm resource for the genetic improvement of waterlogging tolerance in soybean. Tolerance to R2 waterlogging was associated with higher number of pods per plant and more seeds per pod. Growth response to waterlogging stress, as determined by plant height, was correlated between the field and screen house.

The present study of 22 soybean genotypes under three growing conditions documented that screen house studies can provide a good model for waterlogging tolerance testing when plant growth is used as criterion. It also indicated that screen house tests, while not completely duplicating field tests, could distinguish tolerant cultivars from susceptible cultivars.

Acknowledgement

This study was supported by a grant from the USDA Foreign Agriculture Service (FAS) for international collaboration between Vietnam and the United States.

References

•Gizlice, Z., T.E. Carter, Jr., and J.W. Burton. 1994. Genetic base for North American public soybean cultivars released between 1947 and 1988. Crop Sci. 34:1143-1151.

• Gizlice, Z., T.E.Carter, Jr., and J.W.Burton. 1996. Genetic diversity patterns in North American public soybean cultivars based on coefficient of parentage. Crop Sci. 36:753-765.

•Oosterhuis, D.M., H.D. Scott, R.E. Hampton, and S.D. Wullschleger. 1990. Physiological response of two soybean [Glycine max, (L.) Merr.] cultivars to short term flooding. Env. Exp. Bot. 30:85-92.

 Shannon, J.G., W.E. Stevens, W.J. Wiebold, R.L. McGraw, D.A. Sleper, and H.T. Nguyen. 2005. Breeding soybeans for improved tolerance to flooding. Proceedings of 30th Soybean Research Conference, American Seed Trade Association, December 7, 2005. Chicago, IL.

Sullivan, T., T. VanToai, N. Fausey, J. Beuerlein, R. Parkinson, and A. Soboyejo.
 2001. Evaluating on-farm flooding impacts on soybean. Crop Science. 41:93-100.
 VanToai, T.T., J.E. Beuerlein, A.F. Schmitthenner, and S.K. St. Martin. 1994.

Genetic variability for flooding tolerance in soybeans. Crop Science. 34:1112-1115. •VanToai, T.T. S.K. St. Martin, K. Chase, G. Boru, V. Schnipke, A.F. Schmitthenner, and K.G. Lark. 2001. Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci. 41:1247-1252.