

Magnesium as Inhibitor and Enabler of Calcium Phosphate Precipitation

W.G. Harris, X. Cao, V.D. Nair, M.S. Josan, D.A. Herrera, A.C. Wilkie, and C.R. Staples

Soil and Water Science Department, University of Florida, Gainesville, Florida

reactor. In this behavior also shown for simulated dairy soil solutions. With increasing dietary Ca (right): A apatite; W, whitlockite is evident in ashed dairy manure. Whitlockite; C, calcite. Whitlockite; C, calcite. Whitlockite; C, calcite. With increasing dietary Ca (right): A apatite; W, whitlockite; C, calcite. Calcite. Calcite: Calcit	Environmental Importance of Mg	Mg in Dairy Manure: In	hibitor or Preemptor of Ca-P?	Mg as Enabler of Ca-P	Proposed Enabling Mechanism
reactor. Methods: Fluidized-bed reactor for P recovery, chemical analyses, x- ray diffraction (XRD), scanning electron microscopy (SEM), energy- dispersive x-ray fluorescence elemental spectroscopy (EDS).	Mg is ubiquitous in soils and water. Indigenous and anthropogenic sources. Mg-P occurs in manures; is more soluble than most Ca-P. Mg-P in dairy manure can be preempted by high dietary Ca. Mg can inhibit stable Ca-P crystallization in soils, however Mg can also ENABLE Ca-P crystallization. Objectives We present data from several studies that – •Document Mg-P in dairy manure and its effect on water extractable P. •Specify conditions for inhibiting and enabling effects of Mg on Ca-P. We also propose a mechanism for Ca-P "enabling" effect in Ca- Mg-CO ₃ -PO ₄ system. <u>Materials & Methods</u> <u>Materials</u> : Soils, manures, reactor seed grains (quartz), fluidized-bed	Mg as Potential Inhibitor of Ca-P Crystallization Mg as Potential Inhibitor of Ca-P Crystallization Mg as Co ₃ 55°° C Co ₃	Mg as Potential Preemptor of Ca-P Crystallization Mg-P occurs in dairy manure. Documented in multiple samples. Example: EDS spectrum and dot maps (on left). Particles rich in Ca-Mg-P are also observed. Recent work showed that increasing dietary Ca reduced dairy manure P solubility (dietary P constant). Mg-P formed in cows fed diets with lower (but nutritionally adequate) Ca availability. Ca-P formed with higher (but safe) Ca availability. In effect, Mg-P preemptively formed at lower Ca availability, rendering P in manure more soluble. See XRD of ashed dairy samples	P Recovery "Discovery" Ca-P recovery from flushed dairy manure in fluidized- bed reactor foiled by CaCO ₃ precipitation. Recovery enabled by MgSO ₄ . Image: Covery reactor, showing smooth surface; Image: Covery reactor, showing grain surface coverd with precipitate dominated by Ca & P (insert). (c) XRD of seed grain coatings Image: Covery reactor, showing grain surface coverd with precipitate dominated by Ca & P (insert). (c) XRD of seed grain coatings Image: Covery reactor, showing grain surface coverd with precipitated Image: Covery reactor, showing grain surface covergitated Image: Covery reactor, showing grain surface covergitated Image: Covery reactor, showing grain surface covergitated Image: Covergitated Image: Covergitated Image: Covergitated Image: Covergitated Image: Covergitated Image: Covergitated <	Ca -Mg - CO ₃ - PO ₄ Systems At circum-neutral pH (System I below), (CO ₃) is relatively low; (MgCO ₃) _{aq} is also low even at high (Mg). At elevated pH in P recovery (simulated by System II) (MgCO ₃) _{aq} is relatively high proportion of total carbonate species at higher (Mg). Formation of (MgCO ₃) _{aq} prevents: • CO ₃ from precipitating as CaCO ₃ . • Mg from inhibiting apatite nucleation. ************************************
	reactor. <u>Methods</u> ; Fluidized-bed reactor for P recovery, chemical analyses, x- ray diffraction (XRD), scanning electron microscopy (SEM), energy- dispersive x-ray fluorescence elemental spectroscopy (EDS).		A, apatite; W, whitlockite; C, Lower P solubility		Cao, X., W.G. Harris, M. Josan, and V.D. Nair. 2007. Inhibition of Ca-P precipitatio under environmentally relevant conditions. Sci. Total Envron. 383:205-215. >Harris, W.G., A.C. Wilke, and X. Cao. 2007. Bench-scale recovery of phosphorus f