

Anaerobic Ammonium Oxidation (Anammox): A Perplexing Global N Sink C.Ryan Penton and James M. Tiedje - Michigan State University, Center for Microbial Ecology, East Lansing, MI

Anaerobic Ammonium Oxidation

Anaerobic ammonium oxidation (anammox) is drawing increasing attention due to reports of its significant contribution to N losses in a variety of aquatic environments.

- Anammox is particularly interesting due to it's unique characteristics:
- •Anaerobic, primarily autotrophic process

Converts ammonium and nitrite to dinitrogen gas

•Produces twice the N₂ per mole nitrite consumed as denitrification

•Can reduce nitrate to nitrite using organic acids, outcompeting denitrifiers in the process •Can perform dissimilatory nitrate reduction to ammonium (DNRA)

•Produces hydrazine as an intermediate which is stored within an internal anammoxosome •Responsible for up to 79% of total N₂ removal in marine sediments

Anammox reside within deep phylogenetic branches of the order Planctomycetales and appear to be divided into two primary ecotypes and yet undefined species specific niches. The Candidatus "Scalindua sp." anammox are primarily marine while the Candidatus "Kuenenia", "Brocadia", and "Anammoxoglobus" appear to be limited to freshwater habitats

Fig 1

Anammox activity has been measured in a variety of marine sediments and water columns. Percent anammox contribution to total N₂ production generally increases as a function of sediment depth below water surface in various marine habitats (Fig 2). The maximum contribution of anammox to total N₂ production is from the previously deepest reported site (700 m; Thamdrup and Dalsgaard, 2002; Engström et al., 2005). These data suggest that the relative importance of anammox increases with depth (Dalsgaard et al., 2005) and will continue to do so in deeper sediments.

In order to test this, sediment cores were collected from deep Pacific Ocean Cascadia Basin sediments (~3000 m) using a multicorer (Fig 3) during an August 2006 cruise. Anammox and denitrification rates were estimated from the production of $^{29}N_2$ and $^{30}N_2$ in the treatment where $^{15}NO_2^-$ was added (Thamdrup and Dalsgaard, 2002). Porewater O₂, inorganic nitrogen, and Mn^{2+} concentrations were also determined.

C. Ryan Penton The Center for Microbial Ecology, Michigan State University, 540 Plant and Soil Science Bldg East Lansing, MI 48824-1325 Email: pentonch@msu.edu Phone: 1-517-355-0271 ext. 282

Anammox contributed between 13 and 51% of total N₂ production with an average contribution of 38%. Absolute anammox and denitrification rates varied between 0.15-1.7 nmmol N ml⁻¹ wet sediment h⁻¹ and 0.17-1.8 nmol N ml⁻¹ wet sediment h⁻¹. respectively. Anammox and denitrification generally decreased with distance from shore.

Quantification of "Marine" Anammox

Quantitative PCR was performed using the Taqman assay. Primers and probes were designed to target only the 16S rRNA gene of the Candidatus "Scalindua" sp. "marine" anammox bacteria. The taqman probe consisted of a reporter fluorophore and a quencher molecule. Due to the short intermolecular distance the quencher masks the fluorescence of the reporter. During PCR amplification the fluorophore is released by the 5'->3' exonuclease activity of DNA polymerase (Fig 5).

The number of 16S rRNA gene copies were measured as the PCR cycle which fluorescence crosses a certain threshold. Copy numbers were normalized to g⁻¹ wet sediment

Anammox 16S rRNA gene copies were enumerated at all sites where ¹⁵N assays were performed. Mean anammox densities were $\sim 2.0 \times 10^6$ copies g⁻¹ wet sediment. Anammox 16S rRNA gene copy numbers were correlated ($R^2=0.93$) with anammox N₂ production (nmol N ml⁻¹ wet sediment h⁻¹). When the two highest values were removed the correlation decreased (R²=0.68). Calculated cell specific activities, based on 16S copies, ranged from 1.3 to 11.3 fmol ammonium cell⁻¹ day⁻¹.

A depth profile of anammox 16S rRNA copy numbers from the sediment surface to -22 cm at station 2 (Fig 8) showed that anammox numbers remained relatively constant to -6 cm, ranging from 9x10⁵ to 4x10⁶ g⁻¹ wet sediment then decreasing to 8.8x10⁴ g⁻¹ wet sediment at -19 cm. There were no relationships to NO_2^- , NO_3^- , or NH_4^+ profiles.

The significant numbers of anammox 16S rRNA genes found at depths below where NO₂⁻ was available may be due to bioturbation, a result of possible anammox metabolic flexibility, or inactive or dead bacteria. A similar relationship was observed in the Black Sea water column (Fig 9), where anammox cells quantified by FISH did not wholly decrease after NO_2^- was consumed and anammox N_2 production ceased.

Anammox Evidence Using 16S rRNA gene Pyrosequencing

Ŷ 2) Clonal amplification

4) Load enzymes beads 454 Life Sciences

Ultra-deep sequencing of 16S rRNA genes in a station 2-Cascadia Basin sediment was performed using newly designed primers targeting variable region 4. First, a PCR reaction is carried out on environmental DNA using fusion primers, the products are purified, and ssDNA is immobilized on capture beads. Each bead contains a single ssDNA molecule which is placed in water-in-oil emulsions.

Amplification results in millions of copies of a single sequence on each bead, which is then loaded into the wells of a PicoTiterPlate[™] for sequencing, one bead per well. 400,000 reads can be done simultaneously in one run with ~200-250 bases sequenced.

Approximately 4000 16S rRNA gene sequences were obtained using the 454 pyrosequencing method. The Ribosomal Database Project (RDP) classifier was used to predict phylogeny. Proteobacteria was the most abundant phyla (~2000 sequences) while Planctomycetes were represented by ~250 sequences.

Rarefaction curves were constructed at 3, 10, and 20% sequence divergence. At the species level (3%) the current coverage does not approach a full assessment of the diversity. This is especially due to the presence of singletons. However, at the genus level (10%), it appears that the sampling is starting to approach full coverage.

454 FLX pyrosequencing was used to assess whether the "marine" Candidatus "Scalindua brodae", Candidatus "Scalindua wagneri", and Candidatus "Scalindua sorokinii" 16S rRNA gene sequences could be recovered from station 2 sediments in Cascadia Basin in order to validate the specific design of the q-PCR primers and probe. Planctomycetes accounted for 168 sequences, or ~4.1% of the total.

A neighbor joining tree was constructed which showed that anammox sequences formed a relatively deep branch even when based on only ~200 bp (Fig 12). All 25 sequences (0.6% of total 16S rRNA sequences detected) grouped closely with Ca. "S. brodae" and Ca. "S. sorokinii" and no "freshwater" anammox were detected (Fig 13).

References

Dalsgaard T., Thamdrup B., Canfield D.E., Res. Microbiol, 2005. Engström P., Penton C.R., Devol A.H. Anaerobic ammonium oxidation in deep sea sediments off the Washington Margin. 2007. In prep Kartal B., Kuypers M.M.M., Lavik G., Schalk J., Op den Camp H.J.M., Jetten M.S.M., Strous M. Env. Microb. 2007. Kuypers, M.M.M. Sliekers A.O., Lavik G., Schmid M., Jorgensen B.B., Kuenen J.G., Damste J.S.S., Strous M., Jetten M.S.M. Nature 2003 Penton C.R., Tiedie J.M. Appl. Env. Microb. 2006. Penton C.R., Engström P., Devol A.H., Tiedje J.M. Q-PCR of anaerobic ammonium-oxidizing bacteria in deep-Pacific Ocean sediments of the Cascadia Basin. Appl. Env. Microb. In review.

We thank Dr. Paul Johnson of the University of Washington and the crew of the R/V Thomas G. Thompson for inviting us to partake in his cruise of opportunity for sampling of the Cascadia Basin Sediments. Dr. Allan Devol of the University of Washington for his support through the development and implementation of the project and Dr. Pia Engström for analyzing the 15N isotope experiments and performing porewater chemical analysis. We also thank Woo Jun Sul of the Center for Microbial Ecology, Michigan State University for developing the fusion primers for 454 pyrosequencing and the staff of the Ribosomal Database Project for developing pipeline applications for 454 data.