

R.T. Venterea, USDA-ARS; Dept. Soil, Water, Climate,

Reference: Venterea, R.T. 2007. Nitrite-driven nitrous oxide production under aerobic soil conditions: Kinetics and biochemical controls. Global change biol. 13, 1798-1809.

The rate coefficients were applied in a simplified N₂O emissions model. Assuming steady-state and uniform conditions and the absence N_2O consumption, the equation governing N_2O transport is: $-D_{-}\frac{d^{2}[N_{2}O]}{2} = \rho P_{N_{2}O}$

where D_n is the soil-gas diffusion coefficient, ρ is bulk density, and z is depth. Eq. [1] can be integrated to determine the N₂O concentration gradient at the soil surface and then combined with Fick's equation to yield an expression for the N_2O flux that is independent of D_n :

$$F_{N_2O} = \rho \int P_{N_2O} dz$$

Eq. [3] assumes that there is a gas-impermeable^{*za*} (no-flux) boundary at some depth and that N₂O production occurs in a vertical band of thickness $(z_b - z_a)$. The measured Michaelis-Menten kinetic parameters (Fig. 1, Eq. [1]) were used in Eq. [3], assuming a 5-cm band of NO₂⁻, yielding:

$$F_{N_{2}O} = L \rho \left(\frac{\mu_{\max} [NO_{2}^{-}]}{K_{m} + [NO_{2}^{-}]} \right)$$

Fig 7. Model extrapolations of kinetic parameters [NO₂⁻] μg N g⁻¹ (U1)

Eq. [4] predicts N₂O fluxes of 1.0 and 1.4 kg N ha⁻¹ d⁻¹ in soils C1 and C2, respectively, at $[NO_{2}^{-1}] =$ 100 µg N g⁻¹, and a flux of 1.0 kg N ha⁻¹ d⁻¹ in soil U1 at $[NO_2^{-1}] = 5 µg N g^{-1}$ (Fig. 7). This range agrees closely with N₂O fluxes in anhydrous ammonia-fertilized fields (e.g., Venterea and Rolston, 2000), and is comparable to fluxes attributed to denitrification (Riley and Matson, 2000; Li et al., 1992).

CONCLUSIONS

Major processes found to be generating N_2O in the presence of NO_2 and O_2 were: (1) direct biological reduction, (2) direct abiotic reduction, (3) biological reduction to NO and (4) abiotic reduction to NO, with (3) and (4) each followed by (5) biological NO reduction.

The data shown here suggest that field and lab observations showing a response of N₂O fluxes to O_2 may sometimes be misinterpreted as indicative of NO_3^- denitrification, when in fact nitrifier denitrification may be at play.

Steady-state model simulations predict that NO₂⁻ levels often found after fertilizer applications have the potential to generate substantial N₂O fluxes even at ambient O₂. This potential derives in part from the production of N_2O under conditions not favorable for N_2O reduction, in contrast to N₂O generated from NO₃⁻ reduction.

The potential importance of NO₂⁻-driven reactions in generating N₂O emissions appears to be high given the widespread use of anhydrous ammonia and urea, the two fertilizers having the greatest potential for promoting NO_2 accumulation. Urea and anhydrous ammonia together account for 80 % of total fertilizer N applied worldwide (IFA, 2006).

The role of organic matter in promoting NO_2 -driven reactions shown here suggests that agricultural management practices designed to increase soil C storage may have unintended consequences that could counteract greenhouse gas benefits.