

Assessment of Dynamic Soil Carbon Pools Using Visible/Near-Infrared Diffuse Reflectance **Spectroscopy (VNIRS) and Various Multivariate Methods**

¹Soil and Water Science Department, University of Florida; ²Department of Environmental Sciences, University of California, Riverside

Introduction

Rapid, cost-effective and reliable methods are in need to assess the soil carbon (SC) pools and carbon sequestration potential at landscape scales. Visible/near-infrared diffuse reflectance spectroscopy (VNIRS) is a rapid and cost-effective method that provides inferences on multiple soil properties. Our aim was to estimate total SC and five SC chemical fractions using VNIRS comparing five multivariate parametric and non-parametric regression methods.

Gustavo M. Vasques¹, Sabine Grunwald¹, and James O. Sickman²

s = Standard deviation

Descriptive statistics of observed SC properties												
Statistic	Observed Property (mg/kg)					Error statistics of the best VNIRS models						
	ТС	HC	RC	DOC	MC		Boot Model	R ²		RMSE [log(mg/kg)]		
Sample Size	141	141	141	141	141	Property	Best Model	Calib.	Valid.	Calib.	Valid.	RPD
Minimum	2,670	37	1,150	221	18	ТС	LOG-PLSR	0.93	0.86	0.082	0.078	2.71
Maximum	201,988	29,399	181,738	8,995	1,036	HC	SAV-PLSR	0.49	0.40	0.218	0.285	1.29
Median	10,529	2,892	7,382	664	90	RC	SAV-PLSR	0.90	0.82	0.109	0.108	2.23
Mean	14,828	3,707	11,122	809	111	DOC	SNV-PLSR	0.80	0.69	0.110	0.100	1.73
Std. Deviation	21,993	3,292	19,194	818	107	MC	SNV-PLSR	0.65	0.69	0.159	0.137	1.66
Skewness	6.35	4.58	6.64	7.57	5.39						· · · · ·	

Partial Least Squares Regression gave the most accurate estimations of SC properties at 0-30 cm. Some advantages of PLSR are: rapidness, ease of use, and flexibility to deal with correlated and missing data. Non-parametric methods (RT and CT) are more flexible to deal with non-linearity; however RT estimated discontinuous values, thus was less suited for VNIRS modeling. The type of multivariate method had a higher influence in the quality of model than the type of preprocessing transformation.

C-H, O-H, N-H and H_2O (~900; 1,100-1,400; 1,600-1,800; and 2,000-2,500 nm).

Except for HC, VNIRS produced reliable models of TC and SC fractions. Partial Least Squares Regression was the best method amongst all the multivariate methods tested.

Acknowledgements

We thank Carolyn Olson, Miyoun Ahn, Nicholas B. Comerford, and Chunhao Xu for their support. This work was funded by the Cooperative Ecosystem Studies Unit – Natural Resources Conservation Service.

nce Department, University of Florid **GIS Research Lab**

Results

Graphs of estimated versus observed TC and SC fractions of the best VNIRS models

Discussion

All the best VNIRS models of TC and SC fractions were sensitive to the regions of absorption features of

Conclusions