Water flow and hydraulic conductivity in a frozen unsaturated sand
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Introduction
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maximize land use and agriculture in cold regions

Climate change

water flow, storage, evaporation from frozen ground
Artificial ground freezing

v el
How soil water migrates during freezing?
How about the hydraulic conductivity?

Sample

Sand : Tottori dune sand  (Sand)
mean di 0.35mm, pre-washed
Silt  : Fujinomori clayey silt (Silt)
frost susceptible, contain 60% silf and 24% clay
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0 saturation mm? D36
Thermal cond.* WmK1
at 0.25(025) 0.20(0.20)
at0=0. 0.96(1,50,
at 6 = 0.24 (frozen) 1.06(1:05) 0.52(0.55)
at 0 = 0.29 (frozen) 0.66{0.76)
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*The value for thermal conductivity is average of 2 to 20°C for unfrozen
soil and -5 to-20°C for frozen soil.
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Results
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Sand froze slightly faster than silt because of the difference in the thermal conductivity.

Anincrease of 0, decreased of 6, in frozen area and decrease of 0 in nfrozen area (water flow).

In sand water accumulated at freezing front, while water flowed through frozen area in silt.
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Water in almost the entire column moved upward; the peak coincided with the freezing front
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Larger difference in h between frozen and unfrozen areas was observed in sand than silt.

on HYDRUS-1D code (modified for freezing)
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The sand and silt columns were frozen directionally, and water and heat flow during soil freezing was measured.
The flow depended on soil types.
Numerical simulation agreed with the experiments.

K(h) for frozen and unfrozen soils was estimated by Darcy’s law under non-isothermal conditions with ice formation.
K(h) steeply decreased with decreasing h and 6 in unfrozen soil but more gradually decreased in frozen soil.

Use of an impedance factor for calibrating K,(h) appears to be unnecessary when accurate SWC & SFC are available.
Durner model was useful for expressing the hydraulic properties for frozen soils.
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