Determining the Optimum Amount and Timing of Nitrogen Application for Winter Canola Production on the Southern Great Plains

C.B. Godsey¹, D.B. Mengel², H. Zhang¹, W.F. Heer², V.L. Martin²

Introduction

Increased interest in winter canola (Brassica napus L.) production throughout the southern Great Plains has brought fourth several issues regarding production management, N management being one of those issues. Very little N management research for winter canola production has been conducted in the southern Great Plains.

Current N recommendation for winter canola production is 0.02 kg N to produce 1 kg canola with one-third applied in the fall and two-thirds in the spring.

Objectives

Develop N recommendations for winter canola grown in the southern Great Plains, focusing on:

- ✓ Appropriate timing of N application: fall, spring, or split
- ✓ Economic N rate to apply

Methods

Two sets of studies conducted jointly by KSU and OSU during the 2006/2007 canola growing season.

Rate and timing studies conducted on research farms (Perkins, OK and Hutchinson, KS)

 \checkmark 0, 34, 67, 101, or 168 kg N ha⁻¹ applied in the fall, spring, or combination.

✓ Perkins Site - Fall application rates were adjusted for the 34 kg ha⁻¹ residual NO₃-N present.

 \checkmark Hutchinson Site - Rates applied were in addition to the 21 kg ha⁻¹ residual NO₃-N present.

>On-farm rate studies (Sterling and Offerle, KS)

 Sterling Site - 50 kg N ha⁻¹ (N application + residual soil NO₃-N) applied in the fall and 0, 34,
 67, 101, or 168 kg N ha⁻¹ applied in the spring

✓ Offerle Site - 106 kg N ha⁻¹ (N application + residual soil NO₃-N) applied in the fall and 0, 34, 67, 101, or 168 kg N ha⁻¹ applied in the spring

>Urea was used as N source for both fall and spring applications. Fall applications were incorporated prior to planting.

Canola was seeded at 5.6 kg ha-1.

¹Oklahoma State University, Stillwater, OK ²Kansas State University, Manhattan, KS

Results

Nitrogen Application Timing

Winter canola grain yields were very good at the Perkins, OK site, while an early April freeze reduced grain yields at the Hutchinson, KS site.

Timing of N application at Perkins did not seem to have an effect on grain yield or winter survival (data not shown).

>At Hutch, having a minimum of 34 kg N ha⁻¹ in the fall was critical. Winter survival was greatly reduced with the 0 kg N ha⁻¹ treatments.

Table 1. Grain yield at Perkins, OK and Hutchison, KS for fall and spring applied N.

_	Application Timing		Grain Yield	
_	Fall N	Spring N	Perkins	Hutchinson
	kg l	N ha ⁻¹	kg ha ⁻¹	
	0	0	2303 a [†]	254
	34	0	-	265
	34	34	2336 a	473
	34	67	2764 b	706
	34	101	2845 bc	648
	34	134	2746 c	520
Soil NO2-N [‡]	34	21		

[†] Means labeled with the same letter for a given depth are not different at $\alpha = 0.05$.

‡ Soil NO₃-N concentration obtained from a 0 to 60 cm composite soil sample.

 Table 2. Grain yield at Sterling, KS and Offerle, KS from spring applied N.

		Grain Yield	
	Spring N	Sterling	Offerle
	- kg N ha ⁻¹ -	kg ha ⁻¹	
	0	1,669	1389
	30	1960	1568
	60	1,949	1848
	90	1,770	1949
	120	1,747	1814
	150	1,702	1982
Soil NO ₃ -N [‡]		12	50
Fall N Application [¶]		38	56

[†] Means labeled with the same letter for a given depth are not different at $\alpha = 0.05$.

[‡] Soil NO₃-N concentration obtained from a 0 to 60 cm composite soil sample.

All treatments at each location received the indicated fall N application rate.

Nitrogen Rate

Nitrogen application increased grain yield up to 122 kg N ha⁻¹ when combining the Perkins, Hutchinson, Offerle, and Sterling sites.

Figure 1. Relative grain yield versus total soil nitrate N plus fertilizer N (Pr > F = 0.01) combining the Perkins, Hutchinson, Offerle, and Sterling sites.

Summary

Work is on-going and will continue during the 2007/2008 growing season.

- Small adjustments may be made to current N recommendations but no major changes planned at this time.
- Current N recommendations of 0.02 kg N per kg of expected yield still seem appropriate.
- Applying at least one-third of the full N recommendation in the fall is critical.

