Mechanisms for seasonal patterns in NH₄⁺ and NO₃⁺ consumption in semiarid sagebrush and cheatgrass soils

Toby D. Hooker, and John M. Stark. Department of Biology and The Ecology Center, Utah State University Logan, Utah 84322-5305 / thooker@biology.usu.edu

Abstract

Changes in the quantity and quality of plant detrital inputs may be an important mechanism controlling soil C and N dynamics in sagebrush rangelands affected by annual grass invasion. However, seasonal patterns in environmental conditions may also affect soil C and N availability. We investigated the response of soil NH, and NO₃^{*} consumption rates to stimulated substrate pools across a seasonal gradient of soil moisture. Soil mesocosms were collected beneath cheatorass and sagebrush vegetation, and were planted with cheatgrass, incubated in the field, and harvested five times over 17-months. Soil C and gross N cycling rates were determined on intact cores during 72-h laboratory incubations.

Soil moisture content ranged from 9 to 28% across sampling dates, and strongly affected C and N cycling rates. C mineralization rates and microbial biomass increased with soil moisture from summer to autumn, while C mineralization rates further increased in spring - possibly resulting from microbial turnover of plant rhizodeposits. Gross rates of NH4+ production and immobilization were significantly greater in spring than in summer or autumn, consistent with greater C availability. Gross rates of NO₃ cycling, on the other hand, were insensitive to seasonal variation, although both NO3 production and consumption rates were relatively more important components of N cycling during autumn than in summer or spring. The relative increase in both nitrification (in low C-availability microsites) and NO. consumption (in high C-availability microsites) from summer to autumn suggests that there is an important temporal component to microsite heterogeneity

Both NH₄* and NO₃⁻ consumption rates were significantly related to production rates ($r^2 = 0.72$ and 0.60, respectively), indicating that cycling of both N-forms were well-coupled, and that consumption rates were likely limited by substrate availability. However, comparisons of 15N-stimulated versus unstimulated NH * and NO.* assimilation rates reveal that microbial N immobilization was not always substratelimited. First, ¹⁵NO₃ addition had no significant effect on NO₃ consumption rates, regardless of season. Second, the fate of mineralized NH4+ (to nitrification or microbial NH₄* assimilation) in response to ¹⁵NH₄* additions differed strongly among seasons. In summer and autumn. ¹⁵NH₄* additions similicantly stimulated nitrification rather than assimilation rates. In spring, the reverse was true. These results suggest that seasonal patterns of soil moisture. C availability, and plant activity have complex effects on the rates and controls of soil N transf semiarid ecosystems

Methods

Soil mesocosms (25-cm diameter x 34-cm tall steel cylinders) were collected intact from soils ben Cheatgrass (Bromus tectorum) and Sagebrush (Artemisia trideniata subsp. wyomingensis) vegetatii grown with "C-labeled cheatgrass in a greenhouse as part of a larger study

. Mesocosms were returned to the field in early summer 2004 (mid-June), and 2 mesocosms per soil type were harvested five times over the next 17-months

Soil C and gross N cycling rates were measured daily from intact soil cores (3.5-cm diam. x 10-cm tall) during 72-h laboratory incubations

Gross N cycling rates were determined using ¹⁵N isotope pool dilution methodology

Soil cores received 1 of 3 solutions:

- $\begin{array}{rcl} 1. \ ({}^{15}\text{NH}_4)_2\text{SO}_4 & \longrightarrow & \textbf{Gross N Mineralization} \\ (3.0 \text{ mg N/kg was added which increased initial pool sizes by 160\%)} \end{array}$
- K¹⁵NO₃ → Nitrification (NO₃⁻ pools fluctuate seasonally, 1.9 to 7.5 mg N/kg added, increased initial pools by 78 to 400%)

3. Dilute $K_2SO_4 \rightarrow$ Un-stimulated net rates (ionic strength equal to average of ${}^{15}NH_4$ and ${}^{15}NO_3$ solutions)

- Gross N consumption rates were calculated from the difference of gross and net production, e.g.: NH, consumption = N mineralization - net ammonification
- NH4 assimilation = NH4 consumption nitrification
- N immobilization = N mineralization net N mineralization = NH, assimilation + NO, consumption (3)
- ¹⁵N additions may stimulate consumption rates, if N availability limits process rates.
- Stimulated and Un-stimulated rates calculated using net rates with and without added ¹⁵N.
- Stimulated nitrification rates determined by tracing added ¹⁵NH₄ into the NO₃⁻ pool

Objective:

- Investigate whether seasonal changes in soil moisture and C availability affect N-cycling processes in semiarid rangeland soils
- Previous work suggests that:
- 1) Soil moisture regulates C availability
- 2) Microbial inorganic N immobilization is limited by NH₄-availability
- ? Is this pattern consistent across seasons ?

We hypothesize that microbial NH₄ assimilation rates will be stimulated by NH₄ addition, and the stimulation-response will increase with seasonal changes in soil moisture and C availability.

Table 1. Field conditions during study

	Temperature (C)							
Sampling Date	Air	10-cm soil	14-day PPT	Soil H2O	NH₄*	NO3	Season	
8/2/04	23.0	20.6	< 0	0.07	1.9	4.8	Summe	
11/8/04	7.5	6.8	32.6	0.18	1.3	0.8	Autumn	
5/8/05	10.3	12.8	53.6	0.25	2.2	0.5	Spring	
9/5/05	22.0	24.6	< 1	0.04	1.9	6.2	Summe	
11/19/05	-0.6	2.1	~ 30	0.13	2.0	5.0	Autumn	
			mm	a H.O / a soil	ma N / ka soil			

Table 2. Mean Soil C cycling rates

(1)

(2)

	Summer	Autumn	Spring
Soil H2O (g H2O / g soil)	0.10 <u>C</u>	0.21 <u>B</u>	0.26 <u>A</u>
Microbial Biomass C (mg C / kg soil)	274.5 <u>B</u>	429.5 <u>A</u>	471.2 <u>A</u>
C mineralization rate (mg C kg soil ⁻¹ day ⁻¹)	11.1 <u>C</u>	23.1 B	40.2 <u>A</u>

Seasonal patterns of gross N cycling

· Soil C availability (as microbial biomass and C mineralization rates) increased with soil moisture

- Higher C mineralization rates in Spring vs. Autumn may be due to turnover of plant rhizodeposits
- NH₄ production and consumption rates were significantly higher in Spring than Summer or Autumn

 NO² production and consumption rates did not differ among seasons. but were important components of N-cycling in these soils - particularly in Autumn

NH4+ was tightly cycled in these soils

Gross N mineralization rate (mg N / kg / day)

Variation in NH4+ assimilation and

Nitrification vs. gross N mineralization

 NH₄⁺ assimilation tightly coupled with N mineralization (r² = 0.75, slope = 0.64, p < 0.0001) NH₄⁺ production-assimilation relationships did not differ seasonally (p = 0.85) Nitrification rates did not co-vary with N mineralization (p = 0.77, mean = 1.34) · Nitrification was a more important fate for mineralized NH₄ when N mineralization rates were low (< 2 mg N / kg / day)

The fate of mineralized NH4+ shifts from nitrification to NH4+ assimilation as soil moisture and C availability increase

- NH₄⁺ Assimilation rates were coupled with N mineralization rates across seasons. while nitrification rates were not
- Nitrification rates appear to be substrate (NH4*) limited during Summer and Autumn NH⁺ assimilation rates were substrate-limited only in Spring
- . NO3* consumption rates were not significantly stimulated by substrate addition
- (data not shown)

• Since nitrification is presumed to dominate in low C-availability microsites, and NO₃ consumption in high C-availability microsites, there may be a temporal component to the dynamics of microsite processes

The Bottom line:

- 1. Significant seasonal variation in soil C availability and gross N cycling rates was observed
- 2. Microbial NH₄⁺ consumption and assimilation rates were tightly coupled with gross N mineralization, suggesting NH₄ limitation
- 3. However, NH₄ + assimilation rates did not appear to be substratelimited in Summer or Autumn, and were significantly stimulated only in Spring
- 4. In contrast, gross nitrification rates appear to be substrate-limited during Summer and Autumn
- Our hypothesis that NH₄* assimilation rates would increase with soil C availability, and would be stimulated by added ¹⁵NH₄* was only partially supported
- 6. Seasonal patterns of soil moisture and C availability have complex effects on the controls of soil N transformations in semiarid ecosystems

