

Nested Quadrats for Spatially Explicit Measurements of Pasture Plant Communities

Julien Winter, Gaëtane Carignan, Ralph Martin, McLean Nancy, and Alan Fredeen
Nova Scotia Agricultural College, Truro, NS B2N 5E3, Canada

INTRODUCTION

Pastures are modified grassland ecosystems were biodiversity is essential and potentially beneficial.
Biodiversity increases the resilience and stability of agricultural production in the face of pests, diseases, variable weather and climate, and economic fluctuations.
Biodiversity is enhanced by complexity in habitats at scales ranging from la

At NSAC we used grazing intensity by dairy cattle to create three different types of pasture sward habitat and studied the impact on biodiversity.
This poster focuses on our experience with nested quadrats to meas rie the impact on botanical diversity.
Nests of quadrats are a spatially explicit method of observation m^{2} and occasional species at larger scales. Ecological processes also function at different scales

METHODS

Starting in 2004, rotational grazing was used on a naturalized eight paddocks
A) Intensive management: grazed every rotation, then mowed and chain harrowed.
B) Conventional management: grazed every rotation, mowed only once in June
c) Lax management: grazed every second rotation
in 2006, a botanical survey was conducted using nested quadrats. Quadrat sizes were 1, 10, 100, $1000 \mathrm{~cm}^{2}, 1,10,100 \mathrm{~m}^{2}$ Nests were arranged in a row of eight, and were summed to get areas of 200,400 , and $800 \mathrm{~m}^{2}$.
Starting with the smallest quadrat and moving sequentially to larger quadrats, the number of species present were counted.

SPECIES ACCUMULATION CURVES (LEFT PANNEL)

Three common models were fitted to the species/area data.

1. Arrhenius (1921): $S=a^{b}$ $\mathrm{R}^{2}>0.97$. Gleason (1922): $\quad S=a+b \log 10(A) \quad R^{2} 0.80-0.90$ 3. $\operatorname{Monod}(1950): \quad S=a *(A /(b+A)) \quad R^{2} 0.70-0.90$

The Arrhenius model best described the accumulation of species with increasing area searched (LEFT PANNEL).

1. Intensive management increased diversity in the productive field.

Extensive management reduced diversity in the productive field and increased it in the lower yield field.
3. Overall, botanical diversity increased as productivity decreased.

Conclusion: in the productive field, plant competition limited educed botanical diversity.

SPECIES ACCUMULATION RATES

 (RIGHT PANNEL)Analyzing the rate of species accumulation as one steps from one uadrat size to the next size up can detect patterns of species

to 100 cm . At this scale, physical space limits species compettion for light and rooting space
100 to $1000 \mathbf{c m}^{2}$: At this scale the sward is occupied by ubiquitous plants that form the basic sward "matrix". Low rates occur in pastures dominated by a few plants such as Poa spp., Taraxacum officinale, and Tholium repens. Higher rates
to $\mathbf{1 0} \mathrm{m}^{2}$: The rate slowed down.
10 to $100 \mathrm{~m}^{2}$: The rate accelerated with the accumulation of establishment caused by cattle disturbance (grazing manure, urine, hooves), localized death of a matrix specie, and the rate of propagule introduction (soil seed bank and seed rain). Higher rate could also have resul
patches of plants at the $1-10 \mathrm{~m}^{2}$ scale.
100 to $200 \mathrm{~m}^{2}$: The rate slowed down.
200 to $800 \mathrm{~m}^{2}$: At this scale we accumulated infrequent pasture species. However, the rates were more idiosyncratic. As
surveys extended over a greater area, they can encounter patchy colonization, and changes in soil and topography.

DISCUSSION

Nested quadrats have been used for decades to measure the relationship between botanical diversity and area. In our study, we used replicated nests and measured an interaction between pasture productivity and grazing intensity on botanical diversity.
in pastures, processes that affect botanical diversity operate at ferent spark s. major peaks in two major peaks in species accumulation rates.
Replicated nests can also measure the frequency of individual species and the change in their frequency with management according to abundance and analyze their co-occurrence.
Nests account for the fact that ubiquitous species, such as Poa spp., need to be measured at scales $<100 \mathrm{~cm}^{2}$. But we would arely observe common plants with $100 \mathrm{~cm}^{2}$ quadrats: those Disadvantages of nested quadrats include

Like other quadrat tectiques, hestse afected by non random, patchy distributions of plants.
2. Observation on individual species may need more than eight increase the number of observations in nests $<1 \mathrm{~m}^{2}$ size.

ACKNOWLEDGEMENTS

Assistance with data collection by Natalie Balsam, the facilities of he Nova Scotia Agriculturar Coilege, and funcing fron
Natura Sciences and Engineering Research Council of Canada

