

Evaluation of Selfed and Open Pollinated Progeny of Tall Fescue for Turf

College of Agricultural Sciences Keith Rincker, Ken Diesburg Southern Illinois University Carbondale

Introduction

Tall fescue (Festuca arundinacea Shreb.) is a popular turfgrass in the transition zone and northern climates. Tall fescue is deep rooting with good drought and heat tolerance. In addition, it is normally open pollinated, but has a degree of self-compatibility. Self pollination can be used to produce progeny with segregated alleles. Deleterious recessive alleles can then be selected against. Buckner and Fergus (Buckner and Fergus, 1960) suggest that selection within inbred lines of tall fescue may be successful for improved palatability of cattle. Our long-term goal is to find if selection from selfed progeny is more effective than open pollinated progeny. This research specifically evaluates the selfed and open pollinated progeny in different turc characteristics.

Materials and Methods

SIU turf-type tall fescue germplasm was used. In 2006, 16 parents within a polycross were used to obtain selfed and open pollinated progenies. To achieve this, separate clonal plants were left to open pollinate. Seven parents produced enough selfed and open pollinated progeny to be included in the field evaluations. The length of the first leaf blade was measured to obtain an estimate of seedling vigor. Counting the number of leaves when each plant tillered and again counting leaves 13 days later obtained a measurement of leaf production rate. Greenhouse data was treated as a completely randomized design. Progenies were transplanted to the field in a randomized complete block design in March of 2007 at two locations, Horticulture Research Center in Carbondale, IL and Angus Links Golf Course in Windsor, IL. Mature leaf blade length, width and number of seedheads were measured. Measurements were also taken on plant spread and ratings of turf quality, color, density, and disease resistance. Data were analyzed using PROC GLM in SAS.

Source	DF	Type III SS	Mean Square	F Value	Pr>F
location	1	3037.1002	3037.1002	142.30	<.0001
rep	3	546.7986	182.2662	8.54	<.000
location*rep	3	55.0337	18.3446	0.86	0.461
parent	6	1238.3346	206.3891	9.67	<.000
location*parent	6	95.9644	15.9941	0.75	0.610
rep*parent	18	453.2994	25.1833	1.18	0.2723
location*rep*paren	18	418.8806	23.2711	1.09	0.357
pollination	1	1.1168	1.1168	0.05	0.819
location*pollinatior	1	4.3027	4.3027	0.20	0.653
rep*pollination	3	40.7617	13.5872	0.64	0.591
locatio*rep*pollinat	3	35.5267	11.8422	0.55	0.645
parent*pollination	6	1063.9762	177.3294	8.31	<.000
locati*parent*pollin	6	96.8169	16.1361	0.76	0.604
rep*parent*pollinat	18	535.1983	29.7332	1.39	0.128
loca*rep*paren*pol	18	498.2826	27.6824	1.30	0.183
error	559	11930.7045	21,3429		

Source	DF	Type III SS	Mean Square	F Value	Pr>F
location	1	0.8921	0.8921	81.73	<.000
rep	3	0.0322	0.0107	0.98	0.400
location*rep	3	0.0266	0.0089	0.81	0.487
parent	6	0.3050	0.0508	4.66	0.000
location*parent	6	0.0753	0.0126	1.15	0.332
rep*parent	18	0.2826	0.0157	1.44	0.107
location*rep*paren	18	0.1744	0.0097	0.89	0.593
pollination	1	0.0033	0.0033	0.30	0.581
location*pollinatior	1	0.0156	0.0156	1.43	0.232
rep*pollination	3	0.0112	0.0037	0.34	0.795
locatio*rep*pollinat	3	0.0408	0.0136	1.24	0.292
parent*pollination	6	0.1657	0.0276	2.53	0.020
locati*parent*pollin	6	0.0530	0.0088	0.81	0.563
rep*parent*pollinat	18	0.0926	0.0051	0.47	0.969
loca*rep*paren*pol	18	0.2229	0.0124	1.13	0.314
error	559	6,1020	0.0109		

Mature Leaf Blade Width

Source	DF	Type III SS	Mean Square	F Value	Pr > F			
location	1	84542.0042	84542.0042	298.43	<.0001			
rep	3	8455.2721	2818.4240	9.95	<.0001			
location*rep	3	2010.1728	670.0576	2.37	0.0701			
parent	6	5979.4953	996.5826	3.52	0.0020			
location*parent	6	1338.5825	223.0971	0.79	0.5799			
rep*parent	18	5700.2983	316.6832	1.12	0.3301			
location*rep*paren	18	4335.5015	240.8612	0.85	0.6403			
pollination	1	1197.7367	1197.7367	4.23	0.0402			
location*pollinatior	1	148.5151	148.5151	0.52	0.4693			
rep*pollination	3	1063.2557	354.4186	1.25	0.2905			
locatio*rep*pollinat	3	1374.2562	458.0854	1.62	0.1844			
parent*pollination	6	5176.6311	862.7719	3.05	0.0061			
locati*parent*pollin	6	1504.2916	250.7153	0.89	0.5055			
rep*parent*pollinat	18	6515.4058	361.9670	1.28	0.1962			
loca*rep*paren*pol	18	5361.5091	297.8616	1.05	0.3995			
OFFOR	F 47	454050 0407	000 0050		-			

In the greenhouse, three families (#1,3,5) were found to have smaller S₁ seedlings, but there were no significant effects in the rate of leaf production. One S₁ family (#1) hals longer mature leaves (DP=17.1cm compared to S₁= 22.5cm) while another family (#3) has shorter leaves (DP=19.5cm compared to S₁= 17.0cm) and yet another S₁ family (#1) had a larger average number of seedheads (DP=22.4 compared to S₁= 36.8). A greater range of seedling vigor and leaf blade width was found in five families. In leaf production, leaf blade length, and number of seedheads we only found three families with greater range.

Greater range was found in some S1 families, which was expected. This suggests that improvement through selfing is possible. We did not see as many differences in means that we hoped for, but we did see many differences among and some within families. Since tall fescue is a hexaploid, expression of recessive traits is not as great as it would in a diploid. Therefore, it is possible that more generations of selfing are needed. We did observe self incompatibility in many families, since only 7 parents produced enough seedlings to be included in the research. Selection from the progeny is still important because the progeny can pass on favorable genes.

Conclusion

There was sufficient variability trait expression to warrant selection from both S, and OP progenies. Any influence between S, and OP selection remains to be seen in subsequent generations.

References

Buckner, R.C., and E.N. Fergus. 1960. Improvement of Tall Fescue for Palatability by Selection within Inbred Lines. Agron. J. 52:173-6

Acknowledgements

Thanks to the Illinois Turfgrass Foundation for funding this research. We would also like to thank Angus Links Golf Course and Turf Innovations for there cooperation.

Contact Info

Address: Southern Illinois University, Plant and Soil Science 4415, Carbondale, IL 62901; E-mail: keithr02@yahoo.com