GeoChip 3.0: Further Development and Applications of Functional Gene Arrays (FGAs) for Analysis of Microbial Communities

Zhili He¹⁶, Ye Dene¹, Livou Wu¹, Jov Van Nostrand¹⁶, Christopher Hemme¹⁶, Christopher Schadt², Terry Gentry³, Weimin Wu⁴, Laurie Kelloge¹, Baohua Gu², David Watson², Terry C, Hazen⁵⁶, Phil Jardine², Craig S, Criddle⁴, and Jizhong Zhou¹⁴ ¹University of Oklahoma, Norman, OK; ²Oak Ridge National Laboratory, Oak Ridge, TN; ³Texas A&M University, College Station, TX; ⁴Stanford University, Stanford, CA. ⁴Lawrence Berkeley National Laboratory, Berkeley, CA; ⁶Virtual Institute for Microbial Stress and Survival

expected to provide a more comprehensive picture for a given microbial community.

ACKNOWLEDGEMENTS

This research was funded by the U.S. Department of Energy (Office of Biological and **Environmental Research, Office of Science**) grants from the ERSP Program and the

GTL:Genomics ESPP Program.

Summary of GeoChip 3.0 probes and gene sequences (Up to May 2007)					
Gene category	Cat. No.	DL seq. no.	PD seq. no.	Total_probe	Total_CDS
Carbon degradation	24	18337	4092	1924	3192
Carbon fix	5	4682	2218	887	1614
Methane reduction/oxidation	3	4134	1853	447	752
Metal Resistance	43	28820	9625	3510	7021
Nitrogen	12	20800	19229	4006	7334
Organic Remediation	197	55598	18650	7093	12843
Phosphorus	2	1876	1441	471	1069
Sulphur	3	2523	2291	1464	1800
Others (e.g. gyrB)	1	8163	5252	1040	2089
Total	290	144,933	64,651	20,842*	37,714
*Only a single probe is counted for each sequence or each group of sequences.					

associated with increasing nitrate and sulfate, (ii) Day 166 and 248 were also

axis.

Time/communities: (i) The gradient of communities is moving away from the geochemistry and toward the COD, (ii) Day 191 is highly correlated to pH and nitrate, (iii) Day 166, a bit of an outlier, is highly correlated to axis 1 and is being pulled by very high nitrate, but low U(VI) and pH, and (iv) all the other communities are along a changing gradient beginning with high geochemistry and low COD, to the later time points where geochemistry is much lower and COD much higher.