Denitrification in an Agro-ecosystem

PENNSTATE College of Agricultural Sciences

Michael Castellano¹, Charles Walker¹, John Schmidt², Jason Kaye¹, Curtis Dell², Henry Lin¹

¹The Pennsylvania State University, University Park, PA 16802 ²USDA-ARS, University Park, PA 16802

Objective

To determine how different landscape positions along a hydrological gradient contribute to nitrogen transport & transformation during rapid, extreme water table fluctuations characteristic of an Atlantic Coastal Plain system.

Setting and Introduction

- Much of US agricultural production in the Midwest and the Atlantic Coastal Plain is dependent upon drainage systems.
- Artificial drainage systems transport excess water from agricultural soils; however, they can also transport harmful levels of biologically available nitrogen to open waters.
- On the Delmarva Peninsula, excess water is drained through croplands to man-made ditches and natural rivers ultimately reaching the eutrophication-prone Chesapeake Bay.
- · Thus, these ditches have the potential to rapidly transport nutrient-rich agricultural drainage to surface waters.

Methods

- · Large (30 x 30 cm), intact soil cores from each of 3 landscape locations were collected (n=4: see below).
- The water table was raised to the soil surface and then dropped within a period of 12h.
- N₂O & CO₂ emissions were measured; leachate was sampled for future analysis.
- · Soil moisture and matric potential were measured at 10 cm and 20 cm below the surface.

$\mathsf{N}\mathsf{D}$ Near Ditch Ditch

Left Photo: One soil core from each landscape position; tensiometers and volumetric moisture probes are inserted into the cores to measure matric potential and percent soil moisture.

Denitrification

•Davidson et al. (2000) proposed the following relationship between gaseous N emissions and water filled pore space (WFPS), suggesting that denitrification is a function of WFPS and biologically available N.

 We empirically evaluated the relationship by regressing N₂O emissions against Water Filled Pore Space (WFPS).

- WFPS at 10 cm is a better predictor of N₂O emissions than WFPS at 20 cm or their mean (see printout).
- D soils' relatively low variation in CO₂ or WFPS (see printout) suggests that high variation in D N₂O emissions is due to variability in biologically available N rather than variability in dissolved organic carbon or WFPS.
- Our data suggest that management practices promoting D soil water retention above 75% WFPS could increase complete denitrification of nitrate to N₂.

Acknowledgements

This work was funded by the USDA National Needs Fellowship Program #2005-38420-15774 and the USDA-ARS-PSWMRU, University Park, PA.

Soil Cores

30 cm

10 cm

20 cm

Nozzle to manipulate

water table and

sample leachate

 θ sensor

 θ sensor

Delmarva Peninsula

MD

NJ

- flooding began, all landscape locations converged upon similar N₂O emissions.
- Prior to convergence, D soils consistently emitted more N₂O than ND or M soils.
- Although not significantly different, during the 48 hours prior to convergence, the D soils emitted 8.22 mg N₂O-N m⁻² whereas the ND and M soils only emitted 1.82 mg N₂O-N m⁻² and 0.15 mg N₂O-N m⁻². respectively.

Results CO_2

- Ditch - Near Ditch 8 16 24 32 40 48

Flooding Began Water table dropped

- Approximately 120 hours after flooding began, all landscape locations converged upon similar CO₂ emissions.
- During the 120 hours prior to convergence, the D soils emitted significantly more CO₂ (5975.80 mg CO₂-C m⁻²) than ND soils (4147.79 mg CO₂-C m⁻²). The M soils' emissions (5720.63 mg CO₂-C m⁻²) were between D and ND.

0.8 E 0.6 0.7 N-02 0.5 E 0,3

120

1.1 1.0

supporting Davidson significantly differ

from zero, suggesting

•Mean hourly Water Filled Pore Space n = 4 with standard error.

•Note Ditch soils have lowest error/variance in WFPS.

Gaussian Regression: $y = y_0 + ae \left[-0.5((x-x_0)/b)^2 \right]$			
	10 cm WFPS	20 cm WFPS	Mean WFPS
Ditch	r ² = 0.79; p <0.0001	$r^2 = 0.43; p = 0.0004$	r² = 0.09; p = 0.44
Near Ditch	r ² = 0.49; p <0.0001	r² = 0.06; p = 0.55	r ² = 0.44; p = 0.003
Middle	r² = 0.15; p = 0.18	r² = 0.18; p = 0.19	r² = 0.16; p = 0.13

•Table providing data for WFPS-N₂O regression figure on poster.

•Note 10 cm WFPS is the best predictor of N_2O emissions in both locations that emitted N_2O .

• M soils N₂O emissions did not significantly differ from zero