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Objective

To determine how different landscape positions along a
hydrological gradient contribute to nitrogen transport &
transformation during rapid, extreme water table fluctuations
characteristic of an Atlantic Coastal Plain system.

Setting and Introduction

. M_uch of US agricultura_l production in_ th_e Balrana Banineia
Midwest and the Atlantic Coastal Plain is w A
dependent upon drainage systems. M2

DE

\ Site

Chesapeake Bay

« Artificial drainage systems transport excess
water from agricultural soils; however, they
can also transport harmful levels of
biologically available nitrogen to open waters. o= m

» On the Delmarva Peninsula, excess water is
drained through croplands to man-made =

ditches and natural rivers ultimately reaching _

the eutrophication-prone Chesapeake Bay.

» Thus, these ditches have the potential to
rapidly transport nutrient-rich agricultural
drainage to surface waters.

Methods
Soil C
« Large (30 x 30 cm), intact soil cores on tores
from each of 3 landscape locations were j—30cm |

collected (n=4; see below).

» The water table was raised to the soil
surface and then dropped within a
period of 12h.

* N,O & CO, emissions were measured,;
leachate was sampled for future
analysis.
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« Soil moisture and matric potential were sample leachate

measured at 10 cm and 20 cm below
the surface.
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Left Photo: One soil core from each landscape
position; tensiometers and volumetric moisture
probes are inserted into the cores to measure

Right Photo: gas flux
measurements being made
with a photoacoustic gas
analyzer.

matric potential and percent soil moisture.

Flooding Began

Results
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Hours.

Water table dropped

» Approximately 48 hours after
flooding began, all landscape
locations converged upon similar
N,O emissions.

Prior to convergence, D soils
consistently emitted more N,O
than ND or M soils.

Although not significantly
different, during the 48 hours prior
to convergence, the D soils
emitted 8.22 mg N,O-N m-?
whereas the ND and M soils only
emitted 1.82 mg N,O-N m2 and
0.15 mg N,O-N m2, respectively.
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Flooding Began Hours

Water table dropped
« Approximately 120 hours after
flooding began, all landscape
locations converged upon similar
CO, emissions.

« During the 120 hours prior to
convergence, the D soils emitted
significantly more CO, (5975.80
mg CO,-C m-2) than ND soils
(4147.79 mg CO,-C m?). The M
soils’ emissions (5720.63 mg
CO,-C m) were between D and
ND.
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Denitrification
«Davidson et al. (2000) proposed the following - - {/
relationship between gaseous N emissions and :| - e/
water filled pore space (WFPS), suggesting that , )
denitrification is a function of WFPS and Tt b

biologically available N. Davidson et al. 2000, Bioscience

» We empirically evaluated the relationship by regressing N,O
emissions against Water Filled Pore Space (WFPS).
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* WFPS at 10 cm is a better predictor of N,O emissions than
WEFPS at 20 cm or their mean (see printout).

» D soils’ relatively low variation in CO, or WFPS (see printout)
suggests that high variation in D N,O emissions is due to
variability in biologically available N rather than variability in
dissolved organic carbon or WFPS.

« Our data suggest that management practices promoting D
soil water retention above 75% WFPS could increase
complete denitrification of nitrate to N,.

Acknowledgements
This work was funded by the USDA National Needs Fellowship Program
#2005-38420-15774 and the USDA-ARS-PSWMRU, University Park, PA.




WFPS

ol * omn *Mean hourly Water Filled Pore Space n = 4 with
ol Viddle standard error.
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Gaussian Regression: y =y  + ge [0-3(0xx,)/b)]
10 cm WFPS 20 cm WFPS Mean WFPS

Ditch r2=0.79; p<0.0001 r’=0.43;p=0.0004 r2=0.09; p=0.44
Near Ditch r?=0.49; p<0.0001 rr2=0.06;p=055 1r2=0.44;p=0.003
| rr=015;,p=0.18 rr=018;p=0.19 rr=016;p=013

*Table providing data for WFPS-N,O regression figure on
poster.

*Note 10 cm WFPS is the best predictor of N,O emissions in
both locations that emitted N,O.

« VI soils N,O emissions did not significantly differ from zero



