

Nitrogen Rates, Sources and Application Methods for No-Till Wheat

Hugo M. Fontanetto¹, and Agustín A. Bianchini^{2*} ¹INTA Rafaela, ²AAPRESID, Argentina, *bianchini@aapresid.org.ar

Introduction

Wheat is one of the key crops for no-tillage rotations in Argentina. Fertilizer and water use efficiency are the two most powerful tools in production systems that optimize wheat yield, especially in environments with a long continuous agriculture history. Nitrogen (N) is the most yield-limiting nutrient for no-till wheat. N is the nutrient required in the highest amount by a wheat crop, mainly by controlling biomass production. Significant yield increases can be obtained with adequate N availability, when other limiting factors are controlled. The efficiency of the N fertilization in wheat under continuous notillage is affected by various factors, like N rate and utilized N source (García et al., 2001), being the most important for the Central Pampas Region of Argentina, previous crop (corn vs. soybean residues), N rate, N source, and application method (incorporated vs. broadcast) (Gambaudo and Fontanetto. 1994).

The objective of this study was to evaluate the effect of different rates and sources of N in no-till wheat, with different application methods.

Materials and Methods

The experiment was conducted in a tipic argiudoll at INTA Rafaela Research Station, in a field with double crop corn as a previous crop. The wheat cultivar used was BioINTA 3000, planted on June 7, 2006, with a seed density of 116 kg ha⁻¹ and a row width of 0.168 m.

A RCBD with 4 replications was used. The experimental units were small plots of 2 m wide and 10 m long (20 m²). Treatments were a control (N0), and a factorial design 23 with two N sources (urea (46% N) and UAN solution (30% N, 2.6% S)), two pre-plant application methods (broadcast and incorporated), and two N rates (40 and 80 kg N ha-1). All treatments are shown in Table 1. Sulphur (S) was applied in all treatments at a rate of 15 kg S ha-1. The pre-plant N fertilizer was applied 25 days before planting and was incorporated with a no-till wheat drill and the broadcast treatments were hand applied over the corn stubble

Before treatment application, a composite soil sample (15 cores) was taken at 20-cm depth. Organic Matter (OM), Total N (Nt), N-NO3, Bray-1 P, S-SO4, pH. Ca. Mo. K. and Na. were determined.

General crop management practices (weed control, planting date, etc.) were the recommended ones for the agricultural region.

Grain yields were determined by small-plot combines, over an area of 15 m². Grain vields measured in each treatment were used in an ANOVA analysis. and when the differences were significant ($P \leq 0.05$), the Least Significant Difference (LSD) test was applied.

Table 1. Fertilization treatments.									
Nitrogen Source	Application Method	Nitrogen Rate (kg ha ⁻¹)	Treatment						
Control (no N)		NO	1-Control						
Urea	Broadcast	N40	2-N40 preplant (40 kg N ha-1)						
		N80	3-N80 preplant (80 kg N ha-1)						
	Incorporated	N40	4-N40 preplant (40 kg N ha-1)						
	Constant and the second	N80	5-N80 preplant (80 kg N ha-1)						
UAN	Broadcast	N40	6-N40 preplant (40 kg N ha-1)						
	1. 3 . 2 . 2	N80	7-N80 preplant (80 kg N ha-1)						
	Incorporated	N40	8-N40 preplant (40 kg N ha-1)						
		N80	9-N80 preplant (80 kg N ha-1)						

Table 2. Soil test results at planting.												
O. M.	Nt	N-NO ₃	Р	S-SO4	рН	Ca	Mg	к	Na			
mg k	mg kg ⁻¹ mg kg ⁻¹			1.27	cmol / kg							
29.8	1.5	6.1	40	5.3	5.9	9.9	1.3	1.4	0.2			

No-Till Farmer's Argentinean Association

Results and Discussion

The soil test results (Table 2) show that OM levels were around the average for the area. Bray 1 P was above the critical level considered for wheat (18-20 mg kg⁻¹). Ca, Mg and K levels were above the critical levels, and Na was below the levels that cause growth limitations to wheat crops.

Significant wheat yield differences (P<0.05) between the control (1944 kg har 1) and the average of the fertilized treatments (3083 kg ha-1) were found. The interactions between the N sources and application methods and between N rates and sources were significant (P<0.05). The different factors were also significant

Even with the existence of interaction, there was a significant effect of the N fertilization on the wheat production, the UAN solution was more efficient than the urea, and the fertilizer incorporation was better than the broadcast applications.

The interaction between N rates and sources was significant, however, the average grain yields with 80 kg N ha-1 were always higher than with 40 kg ha¹, and the plots with UAN were always higher than those with urea. The incorporation of urea (compared to the broadcast application) and UAN produced a grain yield increase of 24.2%, and 14.9%, respectively. These results demonstrate that the urea was more affected to N losses than UAN. The broadcast application of UAN produced similar grain yields than the incorporated urea, when the 2 N rates were averaged. These results give wheat farmers interesting tools to increase the fertilizer N use efficiency.

Conclusions

•There was a significant grain yield response to N.

•The UAN solution performed better that urea.

3534

•The incorporated application of N was more efficient than the broadcast, and the difference was larger when urea was utilized.

Acknowledgments

This research was funded in part by Petrobras Argentina (PASA Fertilizantes).

References

Gambaudo S. and H. Fontanetto. 1994. INTENSIFICACION TRIGO 2004. Siembra Directa. II. Diferentes fuentes y formas de incorporación del fertilizante nitrogenado. INTA, Centro Regional Santa Fe. Información Técnica sobre el cultivo de Trigo. Serie Trigo 10: 1-4.

García F., H. Fontanetto and H. Vivas. 2001. La fertilización del doble cultivo trigo-soja. Informaciones Agronómicas 10:14-17. INPOFOS Cono Sur. Acassuso, Buenos Aires, Argentina.