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Introduction

• Conservation tillage practices improve soil structure, reduce soil 
erosion, and increase soil organic carbon (SOC) content.

• A number of remote sensing methods were developed for remote 
estimation and assessment of crop residue cover (CRC).

• Most remote sensing methods met with limited success, except for
the Cellulose Absorption Index (CAI), which is based upon a distinct 
spectral feature limited mostly to residues (Daughtry et al., 2001).

• Other methods used include the ASTER Lignin-Cellulose Absorption 
(LCA) Index (Daughtry et al., 2005) And the Landsat TM indices 
NDTI (van Deventer et al., 1997), NDI (McNairn and Protz, 1993, 
and NDSVI (Qi et al., 2002).

• However, soils have different mineral and organic matter  
compositions, which may bias estimates.

• Soil water content affects spectral indices and soil reflectance.

Study objectives

1. Compare crop residue vegetation indices.

2. Compare regression analyses after incorporation of soil information.

Spectral datasets

• Laboratory and field measurement using the Analytical Spectral 
Devices FieldSpec Pro (Boulder, CO) spectrophotometer (HRSL).

• Data from Brown et al. (2006), which were acquired from a subset of 
the USDA-NRCS National Soil Survey Center’s Characterization 
Data Library (Lincoln, NE).

• Data from Jim Reeves of the USDA-ARS Environmental 
Management and By-Product Utilization Laboratory (EMBUL). 

• Data acquired from online spectral libraries, including:

• USGS Spectroscopy Lab Spectral Library Splib05a (Clark, et al., 
2003).

• Elvidge (1990).

• Karl Norris (USDA Instrumentation Laboratory, Beltsville, MD).

• Labsphere Inc.

• Hyperspectral imagery collected by SpecTIR LLC (Sparks, NV) over 
Fulton and Cass counties in Indiana on May 29, 2006.  Ground-truth 
acquisition utilized line-transect data.

A. Conventionally tilled field B. No-tilled field

C. Line-transect. D. Photographic. E. Photo comparison.

Residue cover measurement methods
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Laboratory setup for spectral measurements

ASD spectro-
photometer

Soil sample

Fore-optics (1º or 
18º, depending on 
sample size)

DC-stabilized 

lighting source
Laptop 

controlling 
ASD

Live vegetation, residues, and soil carbon affect indices

• Live vegetation is dark and shows 
maximum reflectance at R2.2.

• Dry residues, which are mixtures of 
cellulose and lignin, are much brighter 
and show a clear C–OH absorption 
feature centered at 2101 nm.

• Humus WP-80 and activated charcoal 
are darker and relatively featureless.

• Narrow CAI bands capture C-OH absorption feature.

• LCA bands show similar spectral shapes and index values for live
vegetation, residues, requiring NDVI to separate between the two
spectral signatures.

430.05 ~ 0.242.1 ~ 7.70.03 ~ 0.23-0.4 ~ 0.3HRSLGreen corn canopy

70.31 ~ 0.377.1 ~ 10.00.27 ~ 0.342.9 ~ 6.0HRSLWheat residue

270.29 ~ 0.433.4 ~ 9.20.27 ~ 0.391.1 ~ 4.6HRSLSoybean residue

10.366.90.341.5HRSLCotton residue

390.30 ~ 0.423.3 ~ 9.90.27 ~ 0.391.2 ~ 6.3HRSLCorn residue

10.191.50.180.0HRSLHumus WP80

30.47 ~ 0.735.9 ~ 7.60.36 ~ 0.731.1 ~ 1.5
Elvidge, Karl 

Norris
Lignin

110.42 ~ 0.8414.9 ~ 20.90.38 ~ 0.6910.8 ~ 18.0
HRSL, Elvidge, 

EMBUL
Cellulose

10.01-0.10.010.1Splib05Carbon

10.04-0.10.040.0HRSLActivated charcoal
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• Hyperspectral:

(1)

• ASTER LCA:

(2)

• Landsat TM:

Spectral indices used in this study

Soil mineralogy affects spectral indices

• Certain common soil minerals 
have absorptions which can 
bias spectral indices.

• Minerals which negatively bias 
CAI and LCA increase index 
contrast and can potentially 
improve accuracy; those which 
positively bias soils can have 
the opposite effect.

• Common clay minerals 
(kaolinite, montmorillonite, and 
illite) have absorption which 
affect R2.2 and ASTER6, and 
can bias these soils negatively.

• Muscovite mica negatively 
biases CAI and LCA.

• Chlorites can negatively bias 
CAI and positively bias LCA.

• Biotites minimally bias both 
indices.

• Calcite, dolomite, and Mg-
hornblende (amphibole) affect 
ASTER6 and can positively bias 
LCA, but minimally affect CAI.

• Common soil minerals are 
either CAI-neutral (CAI ≈ 0) or 
negative.

• Many common soil minerals are 
LCA positive; some are of 
similar values or exceed values 
of soil residues.

• These minerals then affect soil 
spectral properties, as seen 
with a kaolinic soil from 
Venezuela, with a CAI value of -
10.5.

• These soils mix linearly with 
residue according to:

where λ denotes wavelength 
and fr the residue cover fraction.

• CAIsoil range: -10.5 to ≈ 0.

• LCAsoil range: -12.4 to 8.3.

• CAIsoil and LCAsoil were linearly 
correlated to r2 = 0.4137 for 
3755 soils in Brown et al. 
(2006).

• Landsat TM indices are more 
dependent on relative 
differences between TM band 
reflectances, CAI and LCA on 
spectral shape.

λλλ ,,, )1(
soilrresiduermix

RfRfR ⋅−+⋅=

(3)

(4)

(5)

(6)

(7)

CAI performs best in Indiana

• CAI was compared alongside calculated equivalent ASTER and 
TM bands from SpecTIR hyperspectral imagery.

• CAI performed the best, followed by LCA and NDTI.

• NDSVI, NDI5, and NDI7 fared poorly.

Soil organic carbon affects spectral indices

• SOC affected soil 
reflectivity, and thus, 
spectral indices.

• SOC levels and reflectance 
spectra were acquired for 
77 soils from across the 
USA (most from IA and IN).

• SOC and reflectance 
showed good correlation 
with power regression.

• Each spectral band needs 
to be correlated separately, 
then indices calculated.

• This in turn will affect CAI 
values.

• As SOC increased, 
reflectance decreased, and 
CAI approached a value of 
zero. 

• Above that decrease in 
reflectance was minimal.

• Decrease in reflectance 
affected all wavelengths.

• Most variability in 
reflectance and CAI 
occurred below SOC values 
of 5%.

• Small changes in SOC at 
low SOC contents are more 
significant than at higher 
contents.

• SOC effectively coats soil 
particles, decreasing soil 
mineral reflectance 
properties.

Using soil and residue information to improve residue 
cover estimation

soilresidue

soilpixel

r
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-0.1Muck soil

-0.6Mineral soil

3.7Residue

CAIMaterial
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• Hyperspectral imagery were 
masked to eliminate non-
agricultural fields, clouds, 
shadows, water, live 
vegetation.

• CAI map shows high and low 
residue fields.

• SWIR bands showed incidence 
angle effects (blue circles, 
effects greatest opposite 
direction from sun, but still 
significant for high view angle 
pixels toward sun).

• SSURGO soil maps (USDA-
NRCS Soil Data Mart) were 
used to help distinguish soil 
units.

• Soil units were distinguished 
from others in both false-color 
maps and CAI maps (e.g., 
Muskego muck (Mx) bordering 
Barry loam (Bb), green circles). 

• Soil composition can bias 
residue cover estimates in the 
same field.

• Eqs. (1) and (7) were 
combined and reorganized to 
calculate residue cover:

(8)

• SSURGO data used to create 
three broad soil classes-
mineral, muck (organic), and 
non-agricultural soils.

• Non-ag. soils excluded from 
analysis.

• Excel solver was used to 
determine CAI values of 
residues, and mineral and 
muck soils.

• Method shows slight 
improvement over simple linear 
regression. 

• Mineral and muck soil data 
used in conjunction with CAI to 
estimate fR, and thus, minimize 
need for soil calibration.  

• A few locations misclassified 
by SSURGO.

• A SOC map used in 
conjunction with remote 
sensing data will improve 
residue cover estimates if soil 
mineralogy doesn’t vary. 

16.4718.74%17.8519.0260-100%

87.9210093.85100Total
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0-15%

fR class

22.70

32.10

26.18

Reg. area 
%

21.31

30.12

24.57

Reg. area 
(km2)

21.70%

28.79%

30.77%

Calibration 
area %

19.08

25.31

27.06

Calibration 
area (km2)

• Table above shows summary of differences between 
regression and calibration approaches in determining residue 
cover classes using CAI.

• Calibration method excluded about 6.3% of the area covered 
by regression.

• Most excluded soils were “prairie potholes” and inundated 
soils which could be lumped with muck soils.

• Data would be more accurate without view angle bias- a good 
spaceborne or high-altitude airborne hyperspectral sensor 
would be ideal for residue mapping.

Conclusions

• CAI is the most accurate of all the indices tested in this study, 
followed by LCA and NDTI.

• CAI is the least affected by soil mineralogy and SOC for 
residue estimation; residue is CAI-positive, soils are around 
zero or less. 

• CAI most accurate when incorporating soil mineralogy and 
SOC information.

• Soil mineral and SOC maps can be used to generate CAIsoil

maps, which when used with remotely measured CAI and 
residue CAI with Eq. (8) to determine fR.

• This approach can minimize need for ground truth acquisition 
around time of sensor overpass.

• ASTER LCA is similarly sensitive to vegetation and residue; 
NDVI needed to mask out green fields or correct data.

• Some common soil minerals are strongly LCA-positive, making 
use of this index problematic.

• Normalized difference TM indices work well on specific soils, 
but are not universally applicable.

References

• Brown, D.J., K.D. Shepherd, M.G. Walsh, M.D. Mays, and T.G. Reinsch. 2006. Global soil 
characterization with VNIR diffuse reflectance spectroscopy. Geoderma 132:273-290.

• Clark, R.N., G.A. Swayze, R. Wise, K.E. Livo, T.M. Hoefen, R.F. Kokaly, and S.J. Sutley. 2003. USGS 

Digital Spectral Library splib05a, USGS Open File Report 03-395. U.S. Geological Survey, Denver, 

CO.

• Daughtry, C.S.T. 2001. Discriminating Crop Residues from Soil by Shortwave Infrared Reflectance. 
Agronomy Journal 93:125-131.

• Daughtry, C.S.T., E.R. Hunt, Jr., P.C. Doraiswamy, and J.E. McMurtrey, III. 2005. Remote sensing the 

spatial distribution of crop residues. Agronomy Journal 97:864-871.

• Elvidge, C.D. 1990. Visible and near infrared reflectance characteristics of dry plant materials. 
International Journal of Remote Sensing 11:1775-1795.

• McNairn, H., and R. Protz. 1993. Mapping corn residue cover on agricultural fields in Oxford County, 

Ontario, using Thematic Mapper. Canadian Journal of Remote Sensing 19:152:159.

• Qi, J., R. Marsett, P. Heilman, S. Biedenbender, S. Moran, D. Goodrich, and M. Weltz. 2002. 

RANGES improves satellite-based information and land cover assessments in southwest United
States. Eos 83:601.

• van Deventer, A.P., A.P. Ward, P.H. Gowda, and J.G. Lyon. 1997. Using Thematic Mapper data to 

identify contrasting soil plains to tillage practices. Photogrammetric Engineering and Remote Sensing 
63:87-93.

Direction of sun

R
e
fl
e

c
ta

n
c
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Codorus soil

Corn residue 

Live corn

SWIR

Wavelengths (nm)

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

CAI bands 

ASTER bands 

Landsat ETM 

1 2 3 4 5 7

1 2 3 4
5

6
7 8 9

Visible NIR

SOC (%)

0 10 20 30 40 50

C
A

I

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

SOC (%)
0 2 4 6 8 10 12 14 16 18

C
A

I

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Gilford fine sandy loam spectra, SOC

Wavelength (nm)
2000 2100 2200 2300 2400

R
e
fl
e
ct

a
n
c
e

0.0

0.1

0.2

0.3

0.4

0.5

CAI = -1.3, LCA = 0.2, SOC = 1.3%

CAI = -0.8, LCA = 0.3, SOC = 1.9%

CAI = -0.5, LCA = 0.1, SOC = 2.2%

CAI = -0.2, LCA = 0.1, SOC = 4.5%
CAI = 0.0, LCA = 0.1, SOC = 9.1%

CAI = -0.1, LCA = 0.3, SOC = 16.6%

R
2

.0

R
2

.1

R
2
.2

A
S

T
E

R
5

A
S

T
E

R
6

A
S

T
E

R
8

R
2
.1
 r

e
fl
e
ct

a
n
c
e

0.0

0.2

0.4

0.6

0.8

1.0

R
2.0

, r2 = 0.8062, RMSE = 0.0621

R2.1, r
2
 = 0.8188, RMSE = 0.0612

R
2.2

, r2 = 0.8033, RMSE = 0.0580

R2.1 regression

R
2
.1
 R

e
fle

c
ta

n
c
e

0.0

0.2

0.4

0.6

0.8

1.0

R
2.0

, r2 = 0.8382, RMSE = 0.0788

R
2.1

, r
2
 = 0.8422, RMSE = 0.0347

R
2.2

, r2 = 0.8500, RMSE = 0.0315

R
2.1

 regression

Gilford fine sandy loam

All soils


