

Biomass production systems – exploring the options Brad Venuto and Clendon Tucker

Any biomass production system should be 1) environmentally responsible.

ATTENTION

Biomass systems might be one or more of the following 1) low input - CRP/residue 2) medium input - dedicated crop 3) hi-input - dedicated crop

Low-input System

Expected output - low

Example: CRP in Western Oklahoma Soil: Berda loam: Selman Silt loam 1-3% Fertility: low: fertilizer - none Rainfall: 20" Sites: 3 Mixed native; 3 Old World Bluestem 3 harvest dates; 3 years

Medium-input System Expected output - moderate

Example: Perennial grass - switchgrass, Miscanthus Soil: Brewer silt loam Fertility: high; fertilizer - 0, 100, 200 N, legume Rainfall: 30-35" Single harvest; multiple years

Results: Low diversity out yielded high diversity 2:1

2) agronomically feasible and

3) economically viable

- Mean Old World bluestem 2 tons/acre DM; mixed native 1 ton/acre
- Annual harvest not conducive to maintaining wildlife cover
- 1,000,000 tons of biomass/year* would require annual harvest of most
- of Oklahoma's 1,000,000 acres of CRP - a single harvest every 3 years (current NRCS policy) would greatly
- reduce total available biomass from this resource

Best option - leave CRP as is; lease land to hunters; plant more windmillel

Agronomics comparisons

10 vr vield projection based on GRL data

	Sorghum	Legume	Grass	Total
	Dry tons/acre			
	178	0	0	178
(pp)	89	29	0	118
(sb)	89	14	0	103
(alf)	71	42	0	113
	0	0	96	96
(OW blue)	0	0	20	20
(Mixed)	0	0	10	10
	(sb) (alf) (OW blue)	178 (pp) 89 (sb) 89 (alf) 71 0 (OW blue) 0	Dry t 178 0 (pp) 89 29 (sb) 89 14 (alf) 71 42 0 0 (OW blue) 0 0	178 0 0 (pp) 89 29 0 (sb) 89 14 0 (aff) 71 42 0 0 0 96 0 (OW blue) 0 0 20

CS = continuous sorghum; SAL = Sorghum annual legume; SPL = sorghum perennial legume; CPG = continuous perennial grass; CRP = Conservation reserve program pp=pigeon pea; sb=soybean, alf=alfalfa

pp=pigeon pea; sb=soybean, alf=alfalfa. Yields for pp and sb provided by Dr. Srinivas Rao

Economics?

6

Economics - Based on projections Currently projected payment of \$30 to \$50 delivered

'ield range	Production costs \$/ac	Cost per ton
to 9 tons/ac	\$215 to \$280	\$31 to \$36

Does not include transportation costs (50 mile radius?)

Sustainability?

Nitrogen inputs? Wildlife habitat? Soil and water loss? Energy balance?

High-input System

Expected output - high Example: Sorghum Soil: Brewer silt loam Fertility: high: fertilizer - high N Rainfall: 30-35" Two harvest schedules: 21 entries: 3 years

Results:

- Mean yields across 3 years and 21 cultivars = 11.8 tons/acre DM Top yielding cultivar in single cut system = 17.8 tons/acre DM

Gamagrass

Miscanthus Sorahum/Suda

- Large cultivar by harvest management interaction
- Extent of available cultivar variation increases management flexibility
- annual crop does not limit management options
- value as forage or biofuel feedstock
- rotation with annual or perennial legumes is a viable option
- At maximum yield, acreage to supply 1,000,000 tons of biomass/year*
- would require less than 60,000 acres

- water conservation/increased flow

Removal of red cedar from North Canadian River

* Estimate of 1,000,000 tons of biomass/year is based on supplying a 70 to 80 million gallon/year ethanol plant

USDA-ARS Grazinglands Research Laboratory, El Reno, Oklahoma

Results:

- Switchgrass > Miscanthus
- After 3 years, no observed N fertility affect?
- Yield range 8 12 tons/acre DM
- 1,000,000 tons of biomass/year* would require about 100,000 acres

Value-added System

- Example red cedar removal for biofuel
- defray removal cost of invasive species
- wildlife habitat improvement
- rangeland improvement

