Biochemical Characterization and Kinetic Properties of White Rot Fungal ß- Glucosidase Priscilla M. Mfombep^{1,3}, Zachary N. Senwo¹, O. S. Isikhuemhen² and Robert W. Taylor¹

¹ Natural Resources & Environmental Sciences, Alabama A&M University, Normal, AL 35762. ² Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC 27411. ³ Department of Agronomy, Kansas State University, Manhattan, KS 66506.

Introduction

White rot fungi (WRF) secrete extracellular enzymes to digest food needed for their growth and development. WRF produce β -glucosidase, a component of a suite of enzymes used in degradation of lignocellulose. β glucosidase enzyme due to its versatile nature relative to substrate specificity is very important in biomass degradation or conversion; and different WRF differ in their ability to produce this enzyme. This study focused on evaluating β-glucosidase activities among selected WRF. WRF showing the best activities can be used individually or in combination with other organisms, for bioconversion of biomass to fermentable sugars and other bio-products.

Materials & Methods

Seventeen WRF from six genera (Pleurotus, Grifola, Auricularia, Polyporus, Trametes, and Lentinula) were evaluated for β-glucosidase activity. β-glucosidase activity in the extract from cultivation medium was assayed at 37°C for 30 minutes, using *p*-nitrophenyl β -D-glucopyranoside as substrate (prepared in 50 mM sodium acetate buffer, pH 5.0). Total carbohydrate and protein were estimated using phenol-sulfuric acid method and Better Bradford assay kit respectively.

Acknowledgments

Funds for this work came from the School of Natural Resources and Environmental Sciences, through the USDA-Evans-Allen grant # ALAX-011-306 and USDA capacity grant # ALAX-011-202.

Fig. 1. Relationship between pH and β-glucosidase activity of Pleurotus ostreatus.

Fig. 2. Relationship between pH and β-glucosidase activity of Auricularia auricula.

Fig. 3. Relationship between pH and β-glucosidase activity of Lentinus edodes.

Fig. 4. Relationship between pH and β-glucosidase activity of Polyporus squamosus.

Fig. 5. Relationship between pH and β-glucosidase activity of Grifola frondosa.

Fig. 9. Relationship between temperature and β-glucosidase activity of Lentinula edodes.

Results

Fig. 7. Relationship between temperature an β-glucosidase activity of *Pleurotus* ostreatus

Fig. 8. Relatationship between temperature and β-glucosidase activity of Auricularia auricula.

Fig. 10. Relationship between temperature and β-glucosidase activity of Polyporus squamosus

Fig. 12. Relationship between temperature and β-glucosidase activity of *Trametes versicolor*.

fungi. Samples Pleurotus 261 Pleurotus 350 Pleurotus 400 Grifola 26 Grifola 28 Grifola 32 Lentinula 1 Lentinula 4 Lentinula 7 Auricularia 265 Auricularia 1120 Auricularia 1137 Polyporus 450 Polyporus 451 Trametes 120 Trametes 122 Trametes 176

[†] Standard deviation. [§] ANOVA (Means with the same letters within the same columns are not significantly different)

(Table 1). content.

> There was no significant correlation between protein content and β -glucosidase activity.

Table 1. Total protein and carbohydrate contents in secretions of various white rot

Protein	 -1	Carbohydrate	
	<u> </u>		
$68\ \pm 12.5^{\dagger}$	(I) [§]	$65\ \pm 10.0^{\dagger}$	$(DE)^{\$}$
77 ± 1.4	(IJ)	$46~\pm~6.4$	(G)
82 ± 6.9	(HIJFGHIJ)	$44\ \pm 10.0$	(G)
92 ± 6.0	(FGHIJ)	59 ± 2.5	(EF)
121 ± 0.3	(DEFGH)	14 ± 9.6	(H)
98 ± 4.7	(EFJHI)	53 ± 8.4	(GF)
112 ± 5.7	(DEFGH)	$79\ \pm 10.9$	(C)
71 ± 9.3	(IJ)	53 ± 11.2	(GF)
123 ± 5.8	(DEFGH)	$70~\pm~8.9$	(D)
$228\ \pm 74.7$	(A)	91 ± 0.2	(B)
$200\ \pm 45.4$	(AB)	53 ± 6.8	(GF)
163 ± 12.2	(BCD)	$48~\pm~4.6$	(G)
172 ± 9.1	(BC)	64 ± 4.6	(DE)
$144\ \pm 10.6$	(CDE)	108 ± 4.6	(A)
132 ± 19.1	(CDEFG)	79 ± 5.0	(C)
135 ± 13.2	(CDEFG)	83 ± 1.8	(BC)
141 ± 9.6	(CDEF)	68 ± 8.7	(DE)

Summary

Extracts showed significant differences at p < 0.05 in total protein and carbohydrate contents

Most of the secretions exhibited pH optima between 4.5 and 5.0 (Figs. 1 - 6), and temperature optima at either 60 or 70°C (Figs. 7 - 12). $\sim V_{max}$ values ranged from 6.4 - 291 µg 30 min⁻¹, while K_m values ranged from 0.51 to 660 μM (using non-linear regression fit analysis). $\succ \beta$ -glucosidase activity in extracts was significantly but negatively correlated with carbohydrate