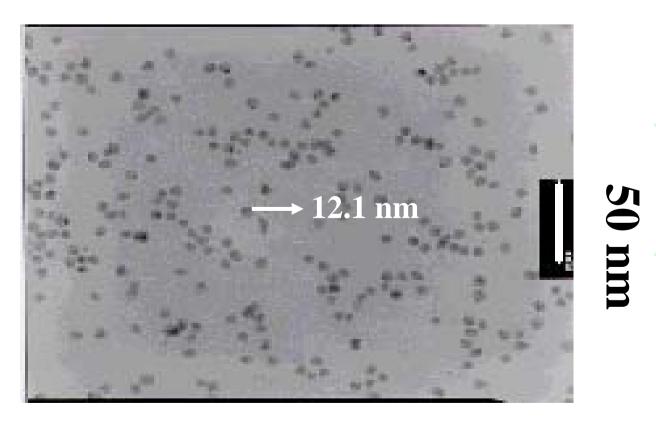
Introduction

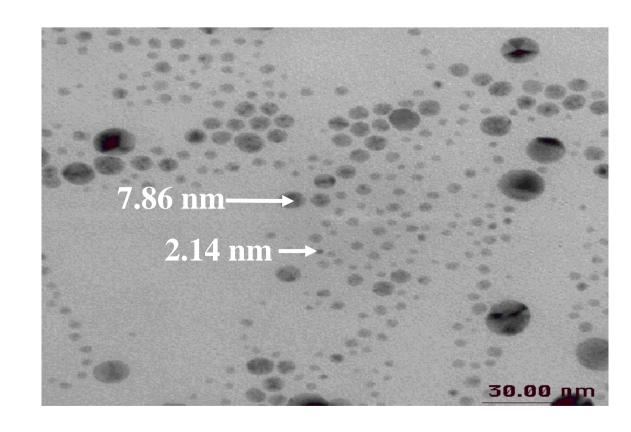
Bionanotechnology – Nano Silver Materials

- -Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosyntheric and environmental-friendly technology for synthesis of nanomaterials -Bionanotechnolgy has been utilized in various areas including biomedical, pharmaceutical,
- cosmetic, environmental, and agricultural fields
- -Among other nanomaterials, silver nanoparticles have proved to be the most effective for antimicrobial efficiency against bacteria, viruses and other eukaryotic micro-organisms -However, there is still a lack of information is available for the effect of nano-materials on the environment

Objectives


•Evaluate soil quality after nano-silver materials are applied in soil

•Examine the sorption characteristics of nano-silver materials in soil


Materials and Methods

1. Nano-Silver Materials

- NanoverTM (1,000 mg L⁻¹) from Pohang University of Science and Technology (POSTECH)

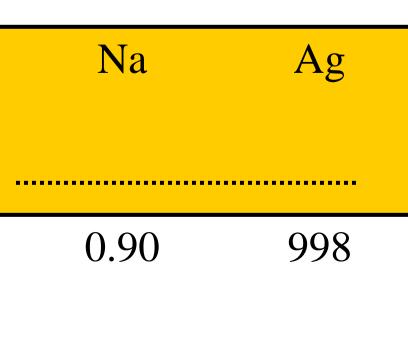


Table 1 Physicochemical properties of NanoverTM

Particle Size	pН	EC	Ca	Mg	K
nm		dS m ⁻¹			• mg L^{-1}
10-30	4.26	11.02	ND	ND	0.10
ND: Not de	etected				

Impact Assessment of Nano-Silver Materials on the Soil Quality Parameters

Jae E. Yang^{1)*}, Youn-Soo Lee²⁾, Yong-Sik Ok¹⁾, Sung-Chul Kim¹⁾, Dong-Kuk Kim¹⁾, Yun-Ho Park¹⁾ ¹⁾ Department of Biological Environment, Kangwon National University, Chuncheon 200-701, Korea ²⁾ Department of Applied Plant Science, Kangwon National University, Chuncheon 200-701, Korea

2. Soil quality assessment with nano-silver application

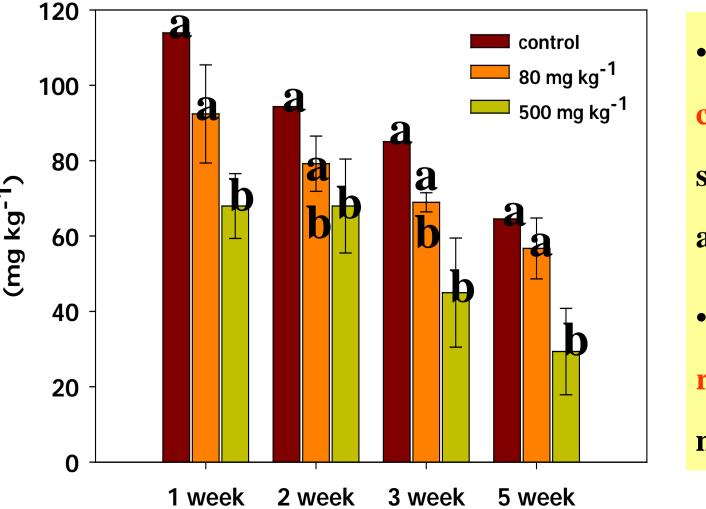
 \succ Treatment concentration of nano-silver solution in soil: 0, 80, 500 mg kg⁻¹ ≻Nano-silver solution was applied every week for 5 weeks Sampling period: 0, 7, 14, 21, 35 days

Table 2. Analytical methods for soil analysis

pH, EC	1:1 Method	CEC	Ammonium acetate method
Soil organic matter	Walkely Black	Soil respiration	Alkali absorption method
Total Nitrogen (T-N)	Kjedahl Method	Microbial Biomass C and N	Fumigation Method
Available P	Bray No. 1 method	Potentially mineralization N	Keeney method

Table 3. Physicochemical properties of soil

	Soil tex	ture	pН	EC	OM	P_2O_5	CEC	Micro-C	Micro-N	PM-N
Sand	Silt	Clay		μS cm ⁻¹	g/kg	mg kg ⁻¹	cmol _c kg ⁻¹		mg kg ⁻¹	
46.3	29.7	24.0	6.04	965.33	51.94	3,691.2	28.09	289.78	38.78	321.06
85.5	0.5	14.0	6.52	174.70	24.62	225.6	12.84	115.56	20.53	115.38
34.7	29.3	36.0	6.38	867.67	41.06	2,714.4	20.63	175.11	29.94	197.11

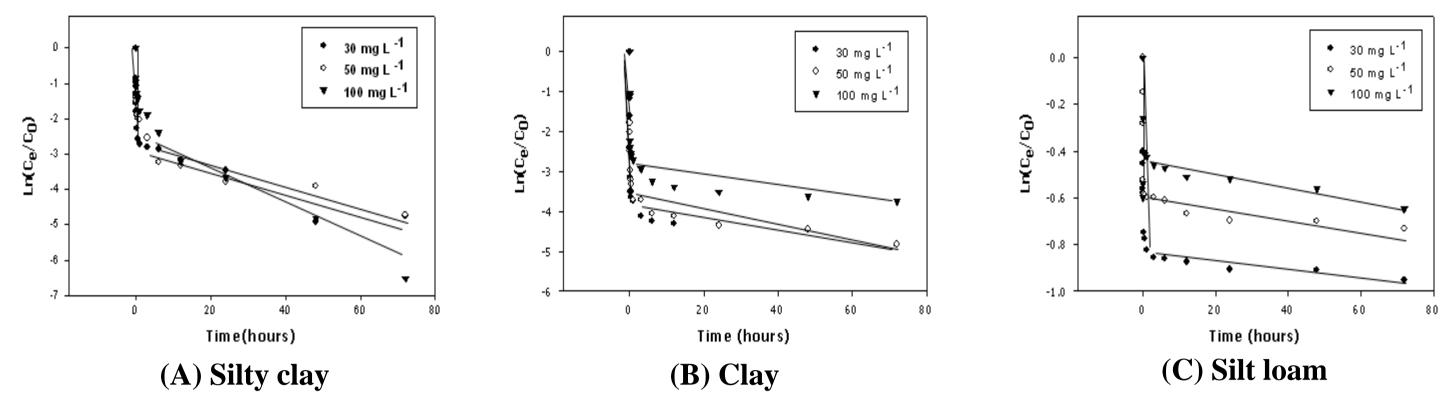

<u>3. Batch Experiment</u>

A. Liquid/solid ratio - 10:1, B. Nano-silver concentration – 30, 50, 100 mg kg⁻¹

C. Temperature: 15, 25, 35°C, D. Shake the samples at 150 (rpm), filter through 0.45µm filter paper and measure the silver concentration

Table 4. Change of chemical properties in soil after nano-silver application

		pH _(1:1)	EC _(1:1)	Exc-Ca	Al	Mn	Zn	Fe
	-		μ s cm ⁻¹	cmol _c kg ⁻¹		mg	kg ⁻¹	
	Soil Texture	CL	CL	L	L	CL	L	L
	control	6.94	438.67	4.63	913.33	52.37	87.00	66.17
1 week	80 mg kg ⁻¹	6.89	386.67	4.81	861.67	67.33	93.67	62.50
	500 mg kg ⁻¹	6.90	333.03	5.11	826.67	137.50	96.50	57.00
2 week	control	6.41	596.00	4.61	1008.33	74.17	89.50	62.00
	80 mg kg ⁻¹	6.63	447.47	5.24	875.00	152.47	95.67	52.05
	500 mg kg ⁻¹	6.70	396.33	5.28	733.33	245.55	93.67	40.98
	control	6.55	657.67	5.64	953.33	62.00	82.17	58.67
3 week	80 mg kg ⁻¹	6.81	551.33	6.03	830.00	142.00	88.50	48.32
	500 mg kg ⁻¹	7.01	368.33	6.22	651.67	307.63	90.17	34.25
5 week	control	6.45	723.00	4.23	1170.00	87.17	86.00	61.83
	80 mg kg ⁻¹	6.55	557.33	4.78	935.00	99.00	95.17	47.22
	500 mg kg ⁻¹	6.66	508.33	4.89	895.00	257.95	93.67	44.18


Results

• Result of ANOVA test showed that pH, EC, exchangeable cation, and concentration of Al, Mn, Zn, Fe were significantly different (p < 0.05) when nano-silver was

applied in soil.

• Among 4 different biological soil properties, only soil n was significantly different as nano-silver material was applied in soil.

Sorption characteristics of nano-silver materials in soil

Soil texture	Concentration	Rate consta	ants (h ⁻¹)	R ²		
	(mg kg ⁻¹) —	k ₁	<i>k</i> ₂	Step I	Step II	
Silty clay	30	89.9	0.04	0.83	0.90	
	50	73.0	0.03	0.76	0.79	
	100	56.1	0.07	0.65	0.97	
Clay	30	135.6	0.01	0.92	0.71	
	50	131.0	0.02	0.95	0.75	
	100	123.8	0.15	0.93	0.69	
Silt loam	30	29.5	0.01	0.73	0.65	
	50	23.9	0.01	0.95	0.81	
	100	35.2	0.01	0.82	0.91	

(2) **Temperature effect**

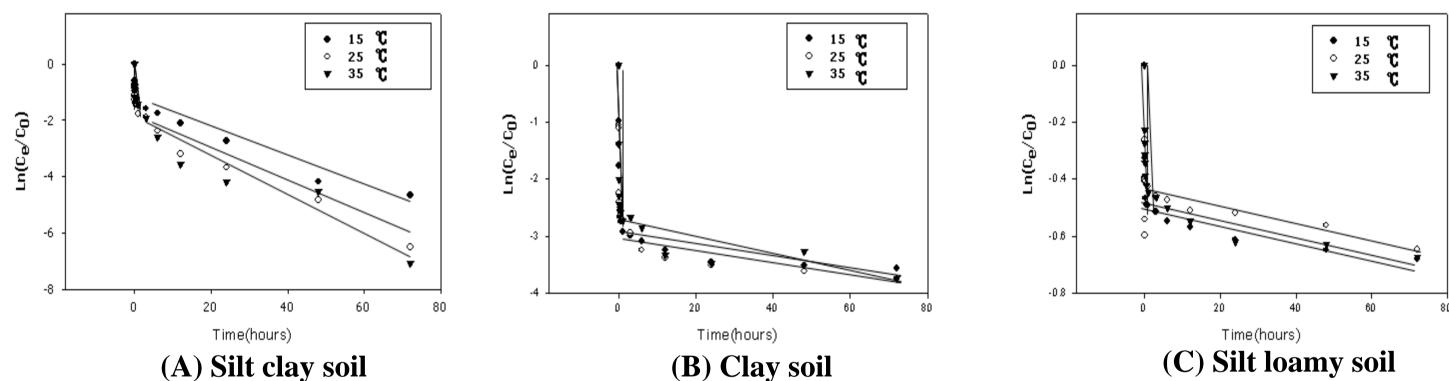


Table 6. The kinetic model (Multiple first order) of the nano-silver adsorption in different temperature

Soil te	exture	Те

Silty clay

Clay

Silt loam

1. Soil variables affected by nano-silver application

temperature were increased

(1) Initial nano-silver concentration effect

 Table 5. The kinetic model (Multiple first order) of the nano-silver adsorption in different soil textures

(\mathcal{C})	Rate cons	tants (h ⁻¹)	R ²		
nperature (°C) —	k ₁	k ₂	Step I	Step II	
15	43.0	0.05	0.69	0.98	
25	56.1	0.07	0.65	0.97	
35	61.6	0.07	0.75	0.91	
15	98.1	0.01	0.85	0.71	
25	123.8	0.01	0.93	0.69	
35	127.3	0.01	0.79	0.71	
15	21.2	0.01	0.77	0.87	
25	35.2	0.01	0.82	0.92	
35	16.5	0.01	0.70	0.80	

Summary

> Chemical properties: pH, EC, exchangeable cation and concentration of Al, Fe, Zn, Mn > Biological properties: Soil respiration

2. Sorption of nano-silver materials in soil was followed multiple first order kinetic model

3. Sorption of nano-silver materials in soil was increased as initial applied concentration and