Crop Rotations on Three Certified Organic Farms in Minnesota

Paul Porter

Department of Agronomy and Plant Genetics
University of Minnesota University of Minnesota

Abstract

So what is your organic crop rotation?
Crop rotation, the process of growing a sequence of plant species on a given piece of land over time, is the foundation of successful organic crop production.

Ask an organic farmer to define their crop rotation and sometimes you get a straight forward answer. More often, however, the response is less straight-forward and a complex discussion ensues.

Case studies of the crop rotation histories from each field on three certified organic farms in Minnesota are examined over a five-year time span. In evaluating the cropping patterns on these three farms we can begin to understand the complexity of designing a crop rotation - in fact we see hat perhaps it is a misnomer to refer to a crop rotation'.

From the perspective of the accredited certification agency and the farmer, Farm A consists of 9 fields which range from 63 o 231 ac in size for a total of 1196 cropped acres, Farm B consists of 13 fields which range from 10 to 1396 ac in size for a total of 319 cropped acres, and Farm C consists of 1 field of 1.2 ac.

The two larger farms grows primarily corn, soybean, small grain and alfalfa as cash crops, whereas the smaller farm grows a large number of vegetable crops.

In evaluating the crops grown on these different fields over the past five years we realize that there is no distinct pattern of crop rotation common among the 9 fields f Farm A, the 13 fields of Farm B, or within the one field of Farm C.

It is difficult to easily describe 'the rotation' each of the three case study

 farms employs. Each uses a multitude of rotations based on the site specific nature of the fields within the farms.
Fields Identified on each Farm

Giobal Organic Alianee (OCCLA)

Over a 5-year Period

So what was the organic crop rotation on each farm?

Farm A grew soybean on 36% of the acreage (on all 9 of 9 fields), aflalfa on 18%, and grasses on 35%, while 11% was fallow.

Farm B grew soybean on 25% of the acreage (on all 13 of 13 fields), aflalfa and pea on 30%, and grasses on 45%.

Thus, legumes were planted on just over 50% of the acreage on Farms A and B.

There was no distinct pattern of crop rotation common among the 9 fields of Farm A or the 13 fields of Farm B

Farm C grew over 60 crops on 1.2 ac. About $1 / 2$ was in vegetables, $1 / 4$ in a perennial guild, and $1 / 4$ in cover crops. A modified 8-year rotation - based on crop families - was initiated. Acreage planted to legumes was just under 50\%.

Not surprising, legumes played a key role in the crops grown.

A visis to Cornercopia
the University of Minnesota Student Organic Farm.

For more details, see
"Crop Rotations in Organic Production Systems" in Agronomy Monograph 54 Organic Farming: The Ecological System'.

Charles Francis (ed).

