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Study site: The William H. Miner Institute in Chazy, Clinton County, New York
The research plots have been maintained as a long term tillage experiment since 1973. Maize (N dependent crop) is the major crop. 
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      Biological N-Fixation by free-living diazotrophs is a globally important 
process with implications for agriculture. Kennedy & Islam (2001) found 
that N2 Fixation by free-living diazotrophs can theoretically account for 
50-150 kg N/ha. In addition, Global N2 fixation by free-living diazotrophs is 
estimated at 100-290 Tg N/yr in terrestrial systems (Clevland et al. 1999).

       Surveys of nifH diversity in soil commonly reveal sequence types that 
correspond to diverse unidentified diazotrophs. Evidence indicates that 
these non-cultivated diazotrophs, rather than their cultivated cousins, are 
the dominant N-fixing organisms in many soil systems.

       Agricultural experiments provide an excellent opportunity to study the 
functional significance of microbial community composition in soil. Long 
term agricultural experiments are particularly useful for studying microbial 
community composition and activity with respect to changes in management 
practice. Both tillage and biomass managements are known to impact the 
composition and function of the diazotrophic community in soil.

      To evaluate whether diazotrophic community composition has functional 
significance in an agronomic context, we examined the effects of tillage and 
biomass management on diazotroph community structure, N-fixation, and 
soil characteristics in a long-term (> 30 years) experimental site in Chazy, 
Clinton county, NY (44°53.13’N, 73°28.40’)

- Diazotoph diversity was reduced by the long term impacts of agricultural 
   management.

- Within long term agricultural treatments, tillage effects were found to 
   dominate most soil characteristics, but biomass management practices 
   were found to have the largest impact on diazotrophic community 
   composition and N-fixation rates: biomass retention depresses both 
   diazotroph diversity and N-fixation rates.

- Results suggest an association between the diversity of diazotrophic 
   community and N-fixation.

Introduction

Results from previous research (Hsu and Buckley, 2009) indicates that:

    Determine whether functional redundancy within the diazotrophic 
community serves as the mechanism linking changes in diazotroph 
diversity to changes in N-fixation rate that have been observed in 
our site.

Goal:

Hypothesis:
    Greater diversity in the diazotrophic community will lead to an 
increase in functional diversity which will buffer N-fixation rates 
against variation in environmental conditions.

Materials &Methods:
Experiment 1
    15 soil cores (top 0-5 cm) were taken from each of four field replicates and 
    pooled to represent treatments T2, T4 and NC. N2 fixation was determined 
    by assessing 15N2 incorporation into soil in relation to controls incubated 
    with unlabeled N2.

Example: NCr1 soil samples
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Experiment 2
a)N-free media were used to enumerate different functional classes of 
    diazotrophs by MPN. Growth conditions included differences in carbon 
    sources (C1 malate, C2 cellobiose, C3 sucrose, C4 mannitol, C5 vanillin, and 
    C6 acetate), pH (7.5, 5.5 and 3.5), oxygen levels (20%, 5% and 0%), trace 
    metals (Mo, V and Fe), and temperatures (4, 22, 30, and 42 degree C). 
    All inoculation tests were incubated in 96-wells plates and growth was 
    detected by absorbance at 590 nm after 40 days of incubation.
b)Bacteria were isolated and purified from different growth conditions and 
    characterized by analysis of their 16S rRNA gene sequences.

Table 1 Number of conditions that supported growth of N- 
              fixing bacteria compared across all MPN experiments 
              (20,000 cells/g of soil as cut-off of growth)

Fig 1 MPN results for growth in C2 cellobiose, C3 sucrose, C4 
         mannitol and C6 Acetate under 3 levels of oxygen.

Table 2 Numbers of conditions that support growth of N-
               fixers compared across different levels of oxygen. 
              (20,000 cells/g of soil as cut-off of growth)

Fig 2 Diazotroph diversity plotted in relation to N-fixation 
          rate and functional diversity.

Table 3 ANOVA table for N-fixation rate under 3 treatments 
              or 6 inoculation conditions.

Table 4 ANOVA table for N-fixation rates under conditions 
               within each treatment.

NC T4T2

Fig 6 Phylogenetic analyses of bacteria isolated from MPN experiments in different C sources and N-Free media under 30 degree C growth condition.

- A cultivation experiment was performed using a range of different 
   N-free media to evaluate whether community diversity 
   corresponds to the diversity of conditions that support the growth 
   of diazotrophs.
- In addition, soil microcosms were exposed to a variety of 
   conditions to determine whether increased diversity in the  
   diazotrophic community is associated with resilience of soil N-
   fixation to changes in the environment. 

Experimental Designs:

# of growth at 
20000 cut off Sum Avg Std U-test 

T4r1 6 
T4r2 8 
T4r3 7 
T4r4 8 29 7.25 0.9574 ns* 
T2r1 7 
T2r2 12 
T2r3 9 
T2r4 8 36 9 2.1602 ns 
NCr1 12 
NCr2 14 
NCr3 13 
NCr4 11 50 12.5 1.2910 NC>T4 
*ns: No signi cant 

- The cultivation experiment showed that more diverse diazotrophic communities could respond to a greater 
   range of growth conditions 
- In soil microcosms no relationship was observed between diazotroph diversity and resiliance to 
   environmental perturbation.

- Use nifH primers to evalute the isolates and compare to nifH clone libraries recovered directly from soil.
- Evaluate the portion of the diazotrophic community that was recovered through cultivation. 

Conclusions:

Further directions:
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Fig 3 Nitrogen fixation rates in microcosms from T2, T4, and NC under different environmental conditions. (comparing significant effect of 
          conditions within each treatment, p<0.05)

DF Sum of Sq Mean Sq F-Value P-Value 
  T2, T4, NC   2 0.0021 0.0011 1.1418 0.3254 
6 conditions   5 0.2300 0.0046 6.6677 <0.0001 

DF Sum of Sq Mean Sq F-Value P-Value 
NC*6 conditions   5 0.0151 0.0030 8.8243 0.0002 
 T2*6 conditions   5 0.0028 0.0006 1.2897 0.3116 
 T4*6 conditions   5 0.0142 0.0028 2.6090 0.0607 

aerobic microaerobic anoxic sum  
T4 1 12 0 13 
T2 3 12 5 20 
NC 5 12 10 27 

Fisher exact test   ns* ns NC,T2>T4 NC>T4 (p=0.015) 

*ns: No signi cant 
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Fig 4 Nitrogen fixation rates in microcosms under 6 different environmental 
           conditions across 3 treatments.(significant  p<0.05)
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