How Does the Management-Induced Change in Soil Organic Matter Control Carbon Dynamics & Organo-Mineral Associations in a Volcanic-Ash Soil in Central Japan? Rota Wagai¹, A. (Mo) Kishimoto¹, S. Yonemura¹ ¹National Institute for Agro-Environmental Sciences.² National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan. (contact: rota@affrc.go.jp)

Introduction

• Volcanic-ash soil, dominant soil type in Japan, holds significant amounts of soil organic matter (SOM) due to high stabilization capacity of its inorganic constituents.

• Yet, SOM destabilization (biodegradation) process and, in particular, its sensitivity to climate change (e.g., temperature increase) are not well understood.

• Literture suggests temperature dependence of SOM degradation (Q10) is linked to substrate quality (e.g., recalcitrance). Volcanic-ash soils are rarely studied, however.

• Here, we compared SOM dynamics using a volcanic-ash soil of the same mineralogy but with contrasting TOC contents (probably minimum & maximum end-members in surface soi environments) to elucidate the factors controlling Q10.

Objectives

• To assess the relationships among Q10 of microbial respiration (SOM degradation), microbial biomass, & various indices of substrate quality using bioassay, density separation, and ¹³C-NMR approaches.

Soil Samples

Sample source: experimental fields at National Institute of Agro-Environmental Sciences, Tsukuba, Ibaraki, JAPAN. Soil classification: Hydric Hapludand. MAT 24°C. Precip 1300mm

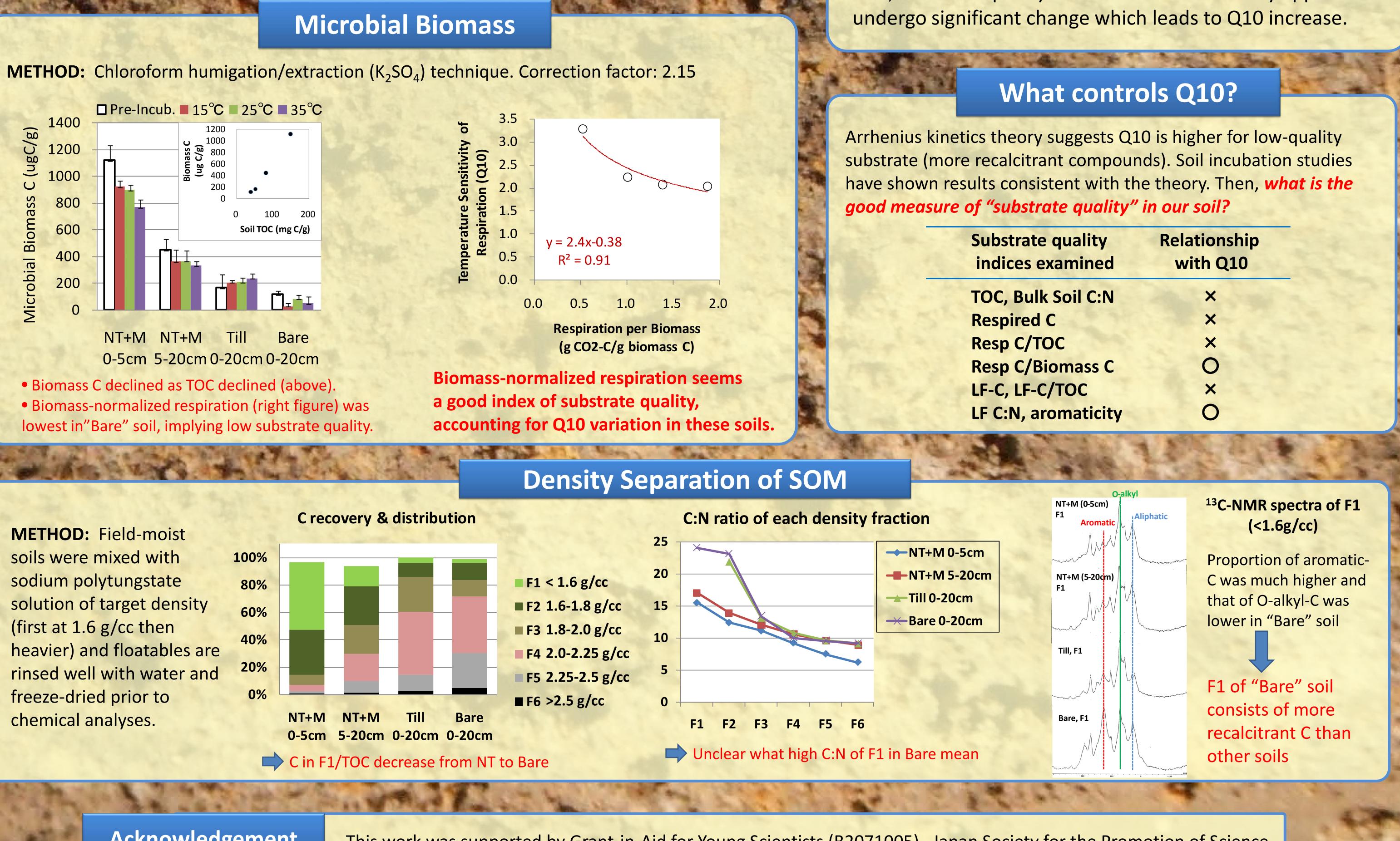
Managment: 3 types of practices were applied to adjacent plots **NT+M** plot = 23 yrs of no-till plus annual leaf-manure addtions (soybean/winter wheat) **Tilled** plot = tillage with inorganic fertilizer application (soybean/winter wheat) **Bare** plot = no NPK fertilizer for decades & kept bare for the last 5 yrs

General soil characteristics

	1.1.1						
Management (sample ID) No-till+Manure No-till+Manure Till Bare	Soil depth (cm) 0-5 cm 5-20 cm 0-20 cm 0-20 cm	Total OC (mg g ⁻¹) 148.5 80.4 51.4 36.9	pH in H ₂ O 6.16 6.24 6.10 6.50	Fe (mg g ⁻¹ 10.1	133.8543.8	Si	Py (m
	T+M NT+M 5cm 5-20cm		Bare 20cm	15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0	two diffe •Till oxal surf •TC decl larg	F+M soil depth c erence a and Bar late-extr ace eros OC, total lined fro ely refle addition	re Fosio N, om

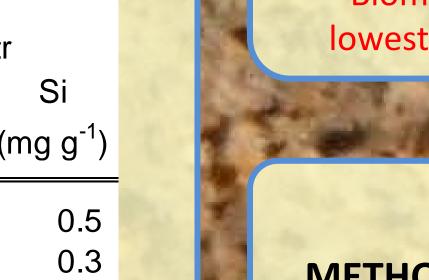
yrophosphate-extr Si AI Fe $mg g^{-1}$) (mg g^{-1}) (mg g^{-1}) 0.5 1.4 2.2 0.3 0.9 3.2 8.0 0.2 2.4 0.1 0.1

was separated into le to morphological d Fe /Al translocation

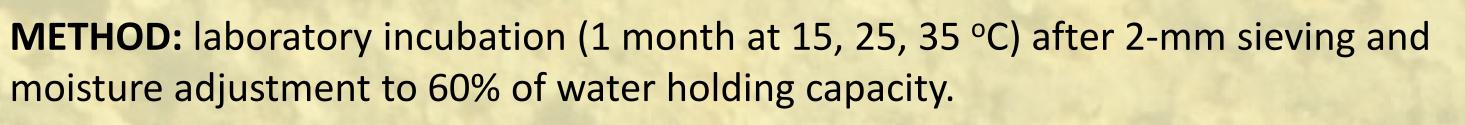

soils had higher Fe, Al in part due to

and C:N ratio all n NT to Bare soil, ting the difference in by management

moisture adjustment to 60% of water holding capacity. Data from 25°C incubation


0-5cm 5-20cm 0-20cm 0-20cm

60 0.4



METHOD: Field-moist soils were mixed with sodium polytungstate solution of target density (first at 1.6 g/cc then rinsed well with water and freeze-dried prior to

Acknowledgement

Incubation Experiment

0-5cm 5-20cm 0-20cm 0-20cm

Despite linear decline in respiration and Resp C:TOC ratio, Q10 did not linearly increase!

This work was supported by Grant-in-Aid for Young Scientists (B2071005), Japan Society for the Promotion of Science.

Summary

• With 3-fold decrease in TOC from "no-till/manure" soil to "bare" soil, microbial biomass C and following substrate quality indicies (soil C:N, respiration potential by 1-month incubation, and OC in low-density fraction) linearly declined.

• In contrast, Q10 of the respiration had non-linear response - all soils had Q10 of \sim 2 except for "bare" soil (Q10 of 3.2).

• High Q10 of "bare" soil can be explained by low substrate quality, indicated by (i) low respiration per microbial biomass C and (ii) high aromatic-C/O-alkyl-C ratio of lowdensity fraction (<1.6 g/cc).

• In studied soils, apparent Q10 was surprisingly constant over a wide range of TOC levels (5-15% TOC). Below ca 4% TOC, substrate quality and microbial community appaer to