

QTL mapping of basal root whorl number in common bean (*Phaseolus vulgaris L*).

Magalhães A. Miguel¹, Kathleen Brown¹ Matthew Blair² and Jonathan Lynch^{1*}

¹Pennsylvania State University, Department of Horticulture, 102 Tyson Building, University Park, PA 16802 ²CIAT, Apartado Aereo 6713, Cali, Colombia. *Corresponding Author: JPL4@psu.edu

THE MCKNIGHT FOUNDATION

INTRODUCTION

Plant root characteristics are of primary importance in determining the ability of a plant to acquire nutrients and water. Basal root whorl number (BRWN) has been associated with nutrient (especially phosphorus) uptake efficiency in common bean. Whorls are defined as distinct tiers of basal roots that emerge along the base of hypocotyls, ranging from 1 to 4 (rarely 5) whorls among bean cultivars. Each whorl bears typically 3-4 roots.

OBJECTIVE

Perform quantitative trait loci analysis of BRWN and basal root number in two populations of recombinant inbred lines of common bean derived from parents contrasting for BRWN.

Figure 1. Genotypes with 1 whorl and 3 whorls.

MATERIAL AND METHODS

Phenotypic data on BRWN was obtained from the seedlings of the RILs 3 days after imbibition. QTL analysis was conducted using QTL Cartographer version 2.0 for Windows. QTL for BRWN, basal root number, and their combined effects were identified with Composite Interval Mapping (CIM).

Figure 2. Root phenotyping of bean seedlings 3 days after imbibition with 0.5 mM of calcium sulfate at 28 °C.

Figure 3. Preliminary results of QTL mapping of basal root whorl number of DOR364 \times G19833 and G2333 \times G19839 RIL populations of common bean.

opulation	Trait (unit)	QTL name	LG ¹	Nearest marker	LOD ²	R2'	TR2*	Additive effect	Positive allele
DOR364 x G19833	BRWN	Rwn2.1	B2	AA198G	2.71	0.1094	0.3708	-0.115	G19833
		Rwn2.2	B2	AG1302D	3.69	0.1557	0.5265	-0.147	G19833
		Rwn7.1	В7	O203D	5.29	0.2475	0.4042	-0.173	G19833
	Average no. Roots	Rno2.1	В2	AG1302D	3.31	0.1103	0.4887	-0.379	G19833
		Rno6.1	B6	BMd12	3.07	0.1192	0.5293	0.355	DOR364
		Rno7.1	В7	O203D	4.10	0.1425	0.4887	-0.387	G19833
	Average Seed weight	Swr2.1	B2	V10120G	3.43	0.1013	0.5482	-0.017	G19833
	(PSU)	Swt3.1	B3	BMd36	4.40	0.1689	0.5995	0.022	DOR364
		Swr11.1	B11	Bng25	3.92	0.1257	0.5729	-0.019	G19833
	Seed weight (g/100S)	Swf3.1	B3	P076G	3.94	0.1023	0.5768		DOR364
	(CIAT - Darien - HP)	Swj4.1	B4	G122G	3.08	0.0878	0.6598		G19833
		Suf11.1	B11	Bng1	7.50	0.2163	0.5814		G19833
G2333 x G19839	BRWN	Rwn5.1	B5	BMd018B	3.37	0.1253	0.4185	-0.168	G19839
		Rwn7.1	В7	SAB3	13.41	(0.5872)	0.9247	-0.392	G19839
	No. Basal roots	Rno5.1	B5	BMd18b	3.43	0.1529	0.5025	-0.511	G19839
		Rno7.1	В7	SAB3	10.31	0.6140	0.8888	-1.216	G19839
	Seed weight	Sw16.1	B6	BM170	6.29	0.3175	0.7445	-0.036	G19839
	(PSU)	Swt7.1	В7	BM210	8.54	0.3877	0.7179	-0.042	G19839
	Seed weight (g/100S)	Hsw6.1	B6	BM3	5.38	0.1788	0.6428	-3.475	G19839
	(CIAT- Darien - HP)	Hsw11.1	B11	Bng1	10.25	0.3233	0.6074	-4.451	G19839

Table 1. QTL for BRWN and basal root number in the DOR364 x G19833 and G2333 x G19839 RIL populations. Circled values highlight a highly significant QTL for BRWN found in both populations.

CONCLUSION

RESULTS

Preliminary results showed few QTL associated with these traits. We found that almost 25% of the variation for BRWN in DOR364 x

G19833 and over 58% of the variation for BRWN in G2333 x G19839 RIL populations were controlled by a single locus.

- The results indicate that few QTL are associated with basal root whorl number in common bean.
- The high proportion of variance explained by a single locus suggests that this trait can be used as a criterion for selection of genotypes with better performance in low phosphorus environments.

AKNOWLEDGEMENTS

This research was partly supported by CCRP of The McKnight Foundation, and the Agricultural Research Institute of Mozambique (***ILAM**).