416-5 Predictors of Dissolved Reactive Phosphorus Concentration in Surface Runoff Water From Major Ontario Soils.
See more from this Division: SSSA Division: Soils & Environmental Quality
See more from this Session: Nutrient Loss As Affected By Management
Abstract:
The dependence
of runoff dissolved reactive phosphorus (DRP) loss on soil test P (STP) or
routine estimations of degree of P saturation (DPS) often varies with soil
types. It is not clear whether the soil specific nature of the relationships
between runoff DRP and DPS is due to the different sorption characteristics of
individual soils, or the inability of these relatively quick methods of
estimating DPS to accurately reflect the actual P saturation status of the
soil. This study aimed to develop universal predictors of DRP concentration in surface
runoff from a wide range of Ontario soils. The soil samples (0- to 20-cm depth)
were collected from six soil series in Ontario, with 10 sites each to provide a
wide range of STP values. Rainfall simulation studies were conducted following
the USEPA National P Research Project protocol. A P sorption study was
conducted using the equation ()
to describe the relationship between equilibrium P concentration (C, mg L-1)
in solution and the amount of P sorbed or desorbed by soil (Qs, mg
kg-1), where Qmax is P sorption maximum (mg kg-1),
k represents P sorption strength (L mg-1), and Q0 (mg kg-1)
is the pre-existing P that was already sorbed to the soil
prior to analysis. Within each soil type, runoff DRP concentration increased
linearly with increasing DPSsorp (i.e. the ratio of (Q0 +
QD)/Qmax) following a common slope value, while the P
buffering capacity (PBC0) at C = C0 yielded a common
change point below which runoff DRP concentration decreased greatly with
increasing PBC0 than above; where C0 and QD represent
the equilibrium P concentration and amount of P desorbed into a 0.03 M
KCl solution during shaking, respectively. Both DPSsorp and PBC0
showed great promise as universal indicators of runoff DRP concentration for
these Ontario soils.
See more from this Division: SSSA Division: Soils & Environmental Quality
See more from this Session: Nutrient Loss As Affected By Management