/AnMtgsAbsts2009.55466 Field Evaluation of Preferential Flow in Agricultural Soil of the Mississippi Delta.

Monday, November 2, 2009: 10:30 AM
Convention Center, Room 411, Fourth Floor

Kim Perkins1, John R. Nimmo1, Richard H. Coupe2 and Claire E. Rose2, (1)U.S. Geological Survey, Menlo Park, CA
(2)U.S. Geological Survey, Pearl, MS
Abstract:
In the Bogue Phalia basin in the Delta region of northwestern Mississippi, as in many farmed areas, intensive use of agricultural chemicals raises water quality concerns. The soils are fine textured and often exhibit surface ponding and runoff after irrigation and rainfall. There is extensive surface cracking during extended dry periods. Fields are typically land-formed to promote surface flow into irrigation ditches and streams that feed into larger river ecosystems. Deep percolation below the root zone has been considered to be minimal in this area; however, unsaturated zone processes, including the effects of a declining water table, are not well understood, and there are few measured unsaturated zone data relevant to deep percolation. 
In this study we assessed solute transport mechanisms within and below the root zone of a fallow soybean field by performing a 2-m ring infiltration experiment. Ponding continued for 67 hours using bromide and rhodamine tracers and subsurface instruments for measuring soil-water content, matric pressure, and solution sampling. Water percolated rapidly below the pond reaching 1 m depth in as little as 30 minutes, indicating preferential flow through the root zone, possibly related to shrink/swell features. Extensive lateral flow at shallow depths was apparent as the surface wetted outward to several meters from the pond. Deeper lateral flow was detected at solution samplers 3 m from the pond edge at 5 m depth within a few weeks. Tracer was not detected in the unsaturated zone below 5 m however; the tracer was detected at the water table 12 m below land surface within 10 weeks of the experiment with concentrations increasing over a period of 10 months. A tracer mass balance also suggests the possibility for deep preferential transport of agricultural chemicals within the Bogue Phalia basin.