

Soil-Atmosphere Gas Transport Processes Created by Soil Cracks

Noam Weisbrod¹ and María Inés Dragila² ¹Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel ²Department of Crop and Soil Science, Oregon State University, Oregon, USA

Mechanism Details

Impact on gas transport

- Cracks effectively extend the reach of the atmosphere into the vadose zone.
- Convective air motion whisks away gas diffusing from the deep soil into the crack, and brings atmospheric air deep into the vadose zone.
- Cracks enhance both exhalation (transfer from soil to atmosphere positive values on graph) and inhalation (transfer from atmosphere to soil: negative values on graph).
- Results of numerical model to assess contribution of crack convection to atmospheric gas exchange are shown (graphs) for a mid-summer and mid-winter day

Winter:

During nighttime, cracks convect and enhance inhalation by ~50%. During daytime, cracks enhance exhalation by ~50%, except near noon when air convection in cracks is quiescent.

Summer

Atmospheric air is carried by convection deep into the soil crack

and is able to diffuse into the deeper portions of the soil profile.

The role of cracks in summer is more significant, enhancing exhalation and inhalation processes by 2-4 times over diffusion through the soil surface.

COOL SOL

Impact on vapor transport

Convective motion removes from the crack warm moist air and entrains cool, dry atmospheric air, significantly enhancing evaporation, by up to two orders of magnitude compared to diffusive losses through the crack. Diurnal pattern of vapor exchange is shown by the relative humidity data

Ben Gurion University of

the Negev

nidity and air density data in a rock fracture, Negev De ensity values within fracture (colored dashed lines) taken a Israel. Air density values within fracture (colored dashed lines) taken at 10 40, 80 and 120 cm depth, and atmosphere (black line). Relative humidity (RH) data shows that as soon as density inversion occurs (1800 hrs: $\rho_{ATM} \cdot \rho_{FRO}$), convection is initiated and the fracture begins to dry out. Field data.

D Evaporation from a fracture strongly depends upon thermal gradient between atmosphere and deep vadose zone (graph below).

Typical convective pattern within a fracture. Data shows temperature profile at midnight within a vertical crack 60 cm x 60 cm. Field data from Weisbrod et al., 2009.

Overview

The exchange rate of gas between the vadose zone and the atmosphere is, in practice, a transfer process between two reservoirs. The transfer flux is sensitive to boundary conditions existing at interface between the two reservoirs. This work looks at the effects of soil cracks on soilatmosphere boundary conditions.

Mass transfer mechanisms are driven by either diffusive or advective processes. Diffusive processes are driven by partial pressure gradients in response to atmospheric conditions, and soil thermal, osmotic and matric potentials. Advective processes usually are driven by atmospheric instabilities that produce pressure gradients within the soil profile.

Soil cracks engender gas transfer that is not taken into account by the processes previously mentioned. Cracks are, in essence, a box that holds a cyclical gas transfer engine, exchanging soil and atmospheric gases advectively at night and diffusively during the day. In fact, soil cracks enhance soil-atmosphere exchange, whether it be heat, water vapor or gas.

Mechanism

- Soil thermal gradient causes an unstable air density gradient within soil cracks at night.
- Unstable air density gradient within the crack leads to thermally-driven free-convection. Air within the soil crack is vented and exchanged with atmospheric air.
- □ Seasonal thermal signature of the upper vadose zone enhances the thermal gradient and significantly increases the transfer rate in winter

What impact does this mechanism have on soilatmosphere gas exchange?

- □ Soil cracks are transient features, generally forming during dry seasons, or in semi-arid settings, or as part of the irrigated agricultural landscape. For soil cracks to form requires specific soil chemical and structural properties (Thomas et al., 2000). Although very common, these features are regionally limited, and thus their impact on atmospheric gas exchange will be equally regionally unique.
- Convective venting of soil cracks enhances evaporation of the soil profile, and increases the exchange of soil moisture and soil air between atmospheric and soil reservoirs.
- Vapor transport:
- Cracks vent mostly at night, increasing nighttime evaporation of the soil profile and have relatively little impact on davtime evaporation
- C Seasonal variability in vadose zone thermal profile causes much higher vapor transport in winter Gas Exchange
- Crack venting has a stronger impact on nighttime soil inhalation of atmospheric gases, and a lesser impact on daytime exhalation
- Seasonal variability in vadose zone thermal profile result in higher contribution from cracks during summer

Convective instability

Air movement within a fracture will

by diffusion.

respond to air density differences. At night soil at depth is warmer than soil 🔵 DAYTIME near the surface. Density inversion occurs within the fracture with less dense, warm moist air resting below more dense cool dryer air. The density inversion drives convective overturning of air within the

crack, which enhances the exchange of air with the atmosphere. During the day, no density inversion forms and movement within the soil crack occurs

COOL, DEN MOIST AIR Daytime: Vapor diffusion rate controls gas motion

DIFFU

Triggering the instability

NIGHTTIME

Nighttime: Convection rate controls gas motion

WARM, LESS DEN MOIST AIR