Biochar Effects on Fertilizer N and P Availability in Soil Agudelo, S.C.¹, Nelson, N.O.¹, Gan, J.², Yuan, W.², ¹Agronomy, ²Biological and Agricultural Engineering Kansas State University

Justification

Biochar, a solid by-product rich in carbon generated during the pyrolysis of biomass, appears to have remarkable agronomic values. There is a growing interest in the use of biochar as a soil amendment, with potential to increase nutrient availability. Thus, the objectives of this project were to:

- Quantify *nutrient recovery* in the biochar relative to the nutrients removed in the biomass harvested.
- Study *availability of the nutrients* present in the biochar, and
- Study the *biochar effect* on availability of fertilizer nutrients.

Nutrient Conservation Study

- ✤ K presented poor recovery in the biochar. However, it was over 100% in the liquid residue.
- Recoveries over 100% were also obtained for Fe, Mn, Zn and Cu. This could be explained due to some contamination in the DI water used or some detection problems in the analytical method.
- Biochar and liquid reside from a liquefaction pyrolysis unit may be a good nutrient source.

Nutrient Source	Nutrients										
	Primary			Secondary	,	Micro-Nutrients					
	Р	К	S	Са	Mg	Fe	Mn	Zn	Cu		
					– mg kg ⁻¹ -						
Feed Stock	355	6905	140	124	252	16	5	12	2		
Biochar	1008	1117	799	1115	570	12208	73	220	28		
Liquid Residue	33	2081	30	31	43	85	1	4	0		
					mg -						
Feed Stock	36	690	14	12	25	2	1	1	0		
Biochar	7	8	6	8	4	85	1	2	0		
Liquid Residue	14	880	13	13	18	36	0	2	0		
Biochar	20	1	40	63	16	5501	101	126	119		
Liquid Residue	39	127	92	105	71	2331	79	135	2		

Nutrient Availability Study

- Two contrasting Kansas agricultural soils, Eva-Optima and Morrill Loam
- ✤ Randomized block design with 4 replications.
- Three biochar rates 0,0.2, 2 mg /kg (0,0.4, 4 Mg/ha)
- Two N rates 0, 100 mg N/kg (0, 0.2 Mg/ha)
- Two P rates 0,20 mg P/kg (0, 0.04 Mg/ha)
- Mehlich III extraction for Phosphorus (P) and
- ***** KCl extraction for NO_3 -N and NH_4 -N were carried out during six times (0, 3, 10, 17, 28, and 56 days).

Nutrient Availability Study Results

Differences among treatments and soil type were evaluated using Analysis of variance (i.e., SAS Proc GLM). Additionally, means and standard errors were performed with SAS v9.1. Three subsets of data were used to perform the ANOVA (Table 1).

Biochar and biochar interactions effects on P and N availability in soil when biochar, biochar + P and biochar + N has been added, respectively.

	Biochar added			Biochar + N			Biochar + P		
Effect	M ₃ -P	NH ₄ -N	NO ₃ -N	M ₃ -P	NH ₄ -N	NO ₃ -N	M ₃ -P	NH ₄ -N	NO ₃ -N
Biochar	ns	***	***	***	*	*	ns	ns	***
Biochar*time	ns	* * *	ns	ns	ns	ns	ns	ns	ns
Biochar*soil	ns	ns	ns	* * *	ns	ns	ns	ns	ns
Biochar*soil*time	ns	ns	ns	ns	ns	ns	ns	ns	ns

*, **, and *** refer to p < 0.05, 0.01 and 0.001 levels respectively, and ns = not significant.

Biochar effects on N and P availability in soil samples (Data set 1)

- rate.

(Data set 2)

Ammonium concentrations were found higher during initial extractions when the high rate of biochar was added to the soil. Conversely, NO₃-N was lower with high biochar

This may due to immobilization or fixation of ammonia on the CEC of the biochar. Therefore, high char addition may inhibit the nitrification process.

✤ P availability was not significant affected when biochar was added (Data not shown).

Biochar effects on N and P availability in soil samples when N has been added

 Biochar reduced availability of N fertilizer. Similar trends to those plotted above where observed when N was added (Data not shown). P availability increases when N fertilizer was added. Around 5.4 mg kg⁻¹ of P became available when high char plus nitrogen was added. This represent a P recovery of about 24% of the P initially added in the biochar.

(Data set 3)

- Biochar did not effect P availability when P was added .
- Nitrate was consistently lower when high char plus P was added. This may be due to high biochar rates may inhibit the nitrification process.

Biochar effects on soil pH

- availability.

Conclusions

- compensate for the effects of biochar.
- Biochar did not increase the CEC of the soils.
- nutrients availability.

Acknowledgements

- Funding from Center for Sustainability Energy.
- ✤ Mark Davis, Agronomy.
- Austin Bontrager, Agronomy.
- Eric Preston, and John Oehlert, Agronomy.