

Nitrous Oxide Emission From Old And New Pastures

V.S. Baron¹, R.L. Lemke², D.G. Young¹, J.A. Basarab³, and A.D. Iwaasa⁴

Agriculture and Agri-Food Canada, ¹Lacombe, AB; ²Saskatoon, SK; ⁴Swift Current, SK; and ³Alberta Agriculture and Rural Development, Lacombe, AB

INTRODUCTION

Agriculture accounts for 8% and 10% of total greenhouse gas (GHG) emissions in Canada and the United States, respectively. Urine and dung from grazing livestock are dominant sources of N₂O-N emission, globally (Mosier et al., 1998). Intensifying pasture production through fertilizer-N application, planting improved species and improving pasture management may increase biomass yield and soil carbon sequestration, but relatively small emissions of N2O-N may offset these positive effects (Conant et al., 2005). Fertilizer-N application increased soil organic carbon in surface soils for crested wheatgrass pastures in North Dakota, but annual N2O-N emission was three-fold greater than heavily and moderately grazed native pastures (Liebig et al., 2006). The urine spot may be the major source of N₂O-N emission on extensive pastures where stocking rates are low. However, as stocking rates increase to accommodate increased production of intensive pastures emission characteristics of the urine spot may be representative of the entire paddock as the area of annual urine coverage increases and urine spot overlap occurs. Very little information exists on the impacts of grazing and grazing management on N2O-N emission from cropland pastures in parkland regions compared to cereal production (e.g. Lemke et al., 1999) The objective of this study was to compare ungrazed, grazed and urine spot sites in two intensively grazed pasture types for N2O-N flux and annual N₂O-N emission rates.

MATERIALS AND METHODS

Pastures, which existed on a silt loam Typic Haplustol soil, were rotationally grazed 30 to 32-yr-old grass (quackgrass, Kentucky bluegrass and smooth bromegrass) and 4 to 6-yr-old meadow bromegrass stands, replicated three times in a randomized complete block design. Annual N₂O-N emission rates and NO₃-N and NH₄-N supply rates were compared from 2003 to 2005 in ungrazed (exclosed), grazed (pasture area) and urine spot microsites within replicates. All microsites were within 20 m of a 5 x 5 m exclosure in each replicate/paddock (Figure 1). Pastures were stockast with 100, 13 and 25 kg ha⁻¹ of N, P and K each spring. Pastures were stocked with beef helfers using the "Put and Take" method from 1999 to 2005; average stocking rates were sing. F).

Each year in July two urine spots were marked as cattle grazed close to the exclosure (Figure 1.). One was used to determine N₂O-N flux and the other to determine so in utrient supply. N₂O-N flux was determined from an adjacent pasture microsite (grazed) and a permanent exclosure microsite (ungrazed). Gas samples were collected from microsites with a non-steady state chamber method (Anthony et al., 1995) using sample collection protocols described by Rochette et al. (2004). Measurement began in July of each year and continued until July of the following year. Gas sampling was initiated after snow meth and continued until the soil was frozen in the fall. Annual cumulative N₂O-N loss estimates were calculated for each sampling unit by linear interpolation between data points (Lemke et al. 1999).

Soil nutrient supply rates for NO₃-N and NH₄-N were determined using cation and anion resin probes after Qian and Schoenau (1995) within the companion urine spot and at three additional grazed microsites close to the exclosure (Figure 1). Burial periods for the urine spot was 7 d and 14 d for the pasture incrosites. Data are shown as 14 d supply rates and analysed statistically within the respective microsite types.

Statistical Analyses

Annual N₂O-N emission rates were analysed as a split-plot arrangement with pasture type as the main plot and microsite as the sub-plots, treating year as a repeated measure using Proc Mixed (Littell et al. 1996). Nutrient supply was compared between pasture types within grazed and urine spot microsites over years in a randomized block design in a similar manner. Where required mean comparisons are made using LSMean comparisons within analyses of variance.

RESULTS AND DISCUSSION

N₂O-N flux for grazed and urine spot microsites were highly variable, while those from the ungrazed control were low and consistent (Figure 2). However, N₂O-N flux from urine spots, particularly the old grass, were higher than the ugrazed sites, with the grazed (pasture) site intermediate. N₂O-N flux from old grass urine sites were very high after initiation from July until late fall (Figure 2).

ANOVA indicated that annual N₂O-N emission rates were significant for pasture type, microsite and the interaction at P. = 0.05, 0.01 and 0.09, respectively. Averaged over microsites and years old grass had a higher N₂O-N emission than the new pasture However, averaged over pasture types urine spot emissions were larger than the other microsites, which were similar (Table 1). Thus, the urine spot appears to have a larger impact on N₂O-N emission from old than new pastures. The degree to which it might impact the overall emission rate depends on pasture coverage.

Table 1. Annual N₂O-N emission rates averaged over years for old grass and new pasture types and ungrazed, grazed and urine spot microsites within pastures

Pasture	Ungrazed	Grazed	Urine	Mean	
Туре			Spot		
	N ₂ O-N (kg ha ⁻¹)				
Old	0.24	2.9	8.3	3.8ª	
New	0.76	1.2	2.6	1.5 ^b	
Mean	0.50 ^a	2.1ª	5.5 ^b		
	CO ₂ equiv. (kg ha ⁻¹)				
Mean	148	622	1628		

^{ab} Means followed by the same letters within rows or columns are similar (P. < 0.05). CO_2 equiv. is N₂O-N emission rate for microsite mean Multiplied by 296.

Within the urine spot microsite the NO₃-N supply rate was 2.3 times higher for the new compared to old pasture, while the NH₄-N supply rate was 2.3 times higher for the old than new pasture (Table 2). We expected that the NO₃-N supply rate for both pastures would be relatively high with the urine spot the more elevated. We didn't expect that the NH₄-N supply rate to differ and remain high in the old compared to new pasture.

Table 2. NO₃-N and NH₄-N supply rate averaged over years for grazed and pasture microsites during two weeks in July following urination.

Pasture Type	Grazed		Urine Spot		
	NO ₃	NH ₄	NO ₃	NH₄	
	ug 10 cm ² 14 d ⁻¹				
Old	37 ^b	31	97 ^b	141ª	
New	68ª	25	222ª	69 ^b	

 ab Means followed by the same letters within rows are similar (P. < 0.05).

Conventional soil analyses showed that NH₄-N concentration in the urine microsite was elevated immediately after urination for both pastures (Table 3). Table 3. Soil NO₃-N, NH₄-N and mineral-N at 0 - 5 cmsoil depth averaged over pasture type after urination (companion spot), July, 2004.

Microsite	NO ₃ -N	NH4-N	Mineral-N		
	mg kg ⁻¹				
Ungrazed	12 ^b	8 ^b	20 ^b		
Grazed	27 ^b	14 ^b	41 ^b		
Urine Spot	188ª	304ª	492ª		

^{ab} Means followed by the same letters within rows or columns are similar (P. < 0.05).

CONCLUSIONS

- The study monitored pasture microsites and not entire areas, therefore the real impact must be estimated with assumed urine coverage ungrazed and grazed areas. Assuming that urine and ungrazed areas each accounted for 10% of the pasture area and using interaction means from Table 1 weighted annual emission rates would be 3.15 and 1.28 kg ha⁻¹ N₂O-N or 932 and 379 kg ha⁻¹ CO₂ Eq. for old and new pastures respectively. The old pasture would require 151 kg ha⁻¹ more carbon sequestered in roots, residues and dung than the new pasture to offset pasture N₂O-N emission. We assume that methane from cattle grazing would be similar as pasture production and nutritive value was similar.
- We don't know why urine on the old pasture had the higher N₂O-N emission rate, but the relatively high NH₄-N supply rate (Table 2) compared to the new pasture indicates that oxidation to NO₂-N may have been inhibited leading towards chemo-de-nitrification processes. Except for a short period after urination de-nitrification was likely limited in both pastures, because soil was relatively dry.

REFERENCES

Anthony, W.H., G.L. Hutcheson, and G.P. Livingston. 1995. Chamber measurement of soil atmosphere gas exchange: Linear vs. diffusion based models. Soil Sci. Soc. Am. J. 59: 1308-1310.

Conant, R.T., K. Paustian, S.J. Del Grosso, and W.J. Parton. 2005. Nitrogen pools and fluxes in grassland soils sequestering carbon. Nutrient Cycling in Agro-ecosystems. 71: 239-248.

Lemke, R.I., R.C. Izauralde, M. Nyborg, and E.D. Solberg. 1999. Tillage and N source influence soil-emitted nitrous oxide in the Alberta Parkland region. Can. J. Soil Sci. 79: 15-24.

Liebig, M.A., J.R. Gross., S.L. Kronberg, J.D. Hanson, A.B. Frank, and R.L. Phillips. 2006. Soil response to long-term grazing in the northern Great Plains of North America. Agriculture Ecosystems and Environment. 115: 270-276.

Littell, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. 1996. SAS System for Mixed Models. SAS Institute, Cary NC. 656 pp.

Mosier, A, C. Kroeze, C. Nevison, O. Oenema, S. Seitzinger, and O. Van Cleemput. 1998. Closing the global N₂O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient cycling in Agroecosystems. 52: 225-248.

Qian, P. and J.J. Schoeneau. 1995. Assessing nitrogen mineralization from soil organic matter using anion exchange membranes. Fert. Res. 40: 143-148.

Rochette, P., D.A. Angers, G. Belanger, M.H. Chantigny, D. Prevost., and G. Levesque. 2004. Emissions of N₂O from alfalfa and soybean crops in Eastern Canada. Soil Sci. Soc. Am. J, 68: 493-506.

ACKNOWLEDGEMENTS

This research was funded by contributions from Agriculture and Agri-Food Canada Matching Industry Inititiative Fund and Sprucehaven Farms Ltd. Evansburg, AB

