Integrated Water Management

Rudy Garcia, Linda Scheffe, and Kenneth Scheffe, USDA-NRCS, Albuquerque, NM

Integrated Water Management

and human resources. The New Mexico Integrated Water

http://www.nm.nrcs.usda.gov/technical/handbooks/iwm/nm

is intended to be user friendly for use by planners with producers. NRCS provided training for planners, partners and producers on "how-to" evaluate and understand sitespecific field conditions, including chemical, biological and

management practices/approaches for cropland management within an integrated farming system. Considering how the farm fits into broader watershed management (e.g. off-site effects and resource opportunities) is also essential to problem-posing and problem-solving resource management success and development of sustainable communities.

physical. This enables us to evaluate and implement best

The Handbook provides guidance on understanding and improving soil quality, water quantity/quality, air quality, nutrient and salinity management, crop yield and quality, irrigation water management, integrated pest management. It also provides guidance on reducing overall on-farm

1 State Agronomist, USDA-NRCS, Albuquerque, NM. ^{2*} Lead Presenter, State Water Quality Specialist, USDA-NRCS, Albuquerque, NM.

³ Assistant State Conservationist for Resource Inventory and Assessment, USDA-NRCS, Albuquerque, NM.

farming enterprise, including resource efficient and

The key approach to achieving integrated sustainable management is to think system (ecosystem, whole farm, and watershed), think critically (connect the dots), actively seek resource opportunities, emphasize technology "exchange" vs. "transfer" with other producers and partners, plan creatively and flexibly, and focus on keeping energy flow through the integrated system. A reemphasis on biological factors is also necessary since recent agriculture has essentially forgotten biological, but rather focused on chemical and physical factors. Improving soil quality is key to improving soil, water, air, plant, and animal resources. Case studies, field trials, demonstrations are all important approaches for technology exchange. Interdisciplinary teams including producers and partners are essential in developing integrated sustainable farming

- Minimize or eliminate tillage Apply nutrients according to soil, plant, tissue tests and nutrient budget Increase on-farm nutrient cycling, plant
- species diversity Maintain ground cover year round by using cover crops and mulches and by leaving crop residues in field Manage/protect soil organisms

Manage Pests Ecologically

- preserve biodiversity
- Rotational grazing, prescriber

Develop Conservation Plan

inventory resources and develop

Choose and apply conservation

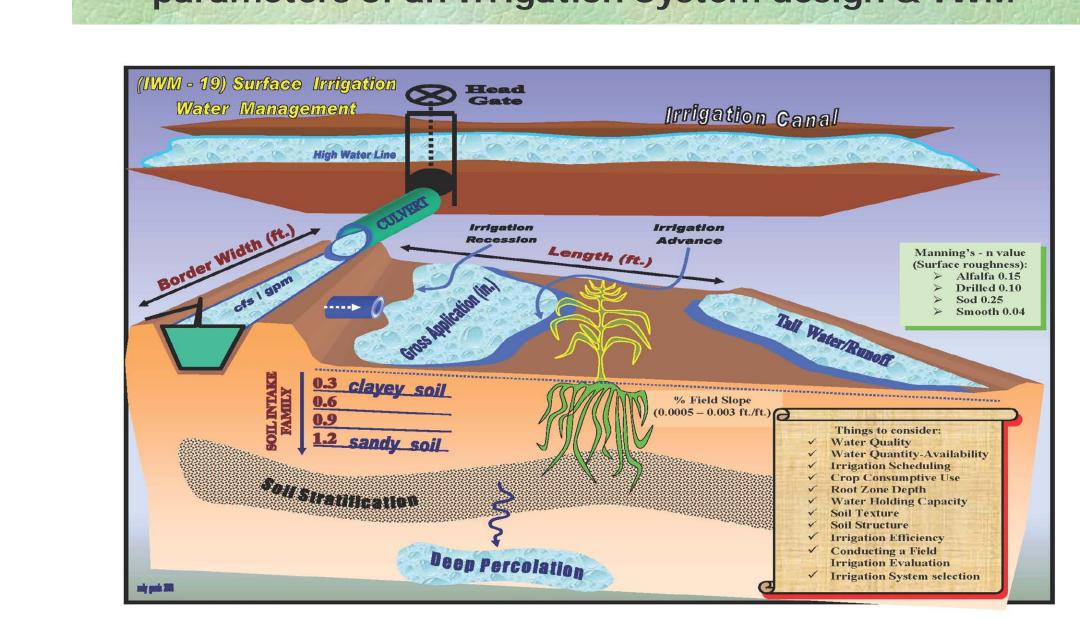
to address identified resource

concerns and take advantage of

conservation plan for whole farm

practices, technologies, approaches

Use integrated approach to


Not only think outside

the box, but step

outside the box

opportunities

A basic field inventory is needed to assess the parameters of an Irrigation System design & IWM

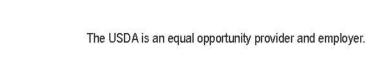
	Steps to Calculate the Crop	Enter	oss Crop Irrigation Water Requirement G Example Calculation	Results	NM IWM Manual
	Irrigation Water Requirement	Results	(Alfalfa)		References & Notes:
STEP 1	Fc = ECe(ct)/ECiw Fc = Ratio of the Crop Threshold Salinity (ECe(ct)) to the Electrical Conductivity of irrigation water (ECiw). Units: dS/m		$Fc = 2.0/1.0 =$ Alfalfa ECe(ct) = 2.0 dS/m $ECiw = 1.0 \ dS/m$	2.0	 Crop Salt Tolerance Table fo NM Irrigation Water Quality Sampling
STEP 2	LF = 0.3086/Fc ^{1.702} LF = Leaching Fraction (for conventional irrigation; e.g. surface irrigation).		${ m LF} = 0.3086/2.0^{1.702} \ { m LF} = 0.3086/3.254$	0.095	> Salinity Assessment GUIDE for Selected Crops
STEP 3	NIR = ETc/(1 - LF) NIR = Net Irrigation Requirement (in.) ETc = Crop Evapotranspiration (in.)		NIR = 40.01/(1 – 0.095) NIR = 40.01/0.905 ETc = 40.01 inches for Alfalfa	44.21"	 NM Crop Consumptive Use Requirements (NRCS FOTG Section 1: Irrigation Guide fo NM)
STEP 4	Ea = Irrigation needed (in.) ÷ Irrigation applied (in.) Ea = Irrigation Application Efficiency		Ea = 2.06/2.5 2.06" (Irr. needed) ÷ 2.5" (Irr. applied) <u>Irr. applied:</u> 7.5 (cfs) x 2.0 (hrs.) ÷ 6.0 (acres) = 2.5" applied.	0.824 (82.4%)	> Irrigation Water Req. Guide (e.g. 3' root zone & Silt Loan soil @ 10% LF = 2.06" needed > QT = DA Calculations for Assessing IWM Requirement
STEP 5	Fg = NIR/Ea Fg = Gross Irrigation Application needed		Fg = 44.21/0.824	53.7"	 The calculation of Fg is used in the Planning & Design of Irrigation Systems and the development of IWM Plans
STEP 6	(# Irr. /yr.) x (in. applied/Irr.) = Total in. applied/ac./yr. (Note: in. applied/Irr. is based on an avg.)		13 Irrigations x avg. of 2.5"/Irr. = (e.g., Irrigated field approximately every 2-wks on a fixed schedule (Apr. – Oct.)	32.5"	 Amount of Irr. Water applied can differ substantially from the planned Gross Irrigation application needed
7 ST	(Note: in. applied/Irr. is based on an avg.) $\mathbf{Fg} - (\mathbf{Total\ in.\ applied/ac./yr.}) =$				

quality test kit for field demonstrations. Dr. Susan Andrews, USDA-NRCS, Soil Quality Team and Ray Archuleta, Manure Management Team, are assisting NM in

Assessing Soil Quality & Soil Health is a function of		ı	Salinity Class	Micro-	Soil Respira-) ₂ -	Aggregate Stability			Soi		JSLE2		
many complex interactions, inputs and management factors such as :	pН		(dS/m) EC _{1:1}	bial Response	tion At optimum temp. & moisture	Lbs. CO ₂ -C/ac/day	(> 0.25		5 mm)		Tillage Intensity Rating		Conditioning	
 Climate Crops & Yield (i.e., biomass produced) Soil type Water Quality/Supply 	> -	8.5	Strongly Saline > 6.07	Few halophilic organisms are active	Unus- ually High Soil Activity	> 64	% Organic Matter	% Water Stable Aggregates	% Clay	% Water Stable Aggregates	listurbing action).			ng soil OM
 Irrigation Water Management Tillage Operations Fertilizer & Pest Management Crop Rotations 	tral	7.5 7.0	Moderately Saline 3.16-6.07	Salt tolerant microbes predomi- nate	Ideal Soil Activity	32 – 64	% Orga	% Water St	%	% Water St	STIR is based on Field Operations (tillage) & its soil disturbing actions (Invert, Mix, Lift, Shatter, Aerate & Compaction).	Lower STIR values = reduced soil erosion	$SCI = (OM \times 0.4) + (FO \times 0.4) + (ER \times 0.2)$	If the rating is (+), the system is predicted to have increasing soil OM If the rating is (-), the system is predicted to have declining soil OM
 Residue Management Soil Amendments: Manure, mulch, effluent, gypsum, etc. 	od.	6.5	Slightly Saline .71 – 3.16	Major microbial processes influenced	Med. Soil Activity	16-32	12	85	80	86	ions (tillag	= reduced	(FOx 0.4)	predicted to
> Cover crops		6.0	Slig Sa 1.71	in P in	Mod. Low Soil	5-16	8	81	60	82	Operat	values	0.4)+	em is p
Carbon Cycling		5.5 5.0	Saline 98-1.71	Selected microbial processes affected	Activity Very	9.5	4	77	40	78	ield C Mix, 1	TIR	NM X	ie syst
Biological	Str	4.5	V. Slightly Saline 0.98-1.71	Sele micr proc affe	Low Soil	< 9.5	2	75 70	20	74	d on I	ower 5)) = IX	s(+), tl
			ine 8	ns 1	Activity	V	1.2			70	s base ons (Ir	Ä	SC	ıting i:
Physical	ra p	3.5	Non Saline 0 – 0.98	Few Organisms affected	No Soil Activity	0	0.8	53	10	65	STIR is actio			If the ra
IMPORTANT!!! Use the Quality Trends: i.e., is Soil	ne Farm		ord Form	(Case Stu					_		FO	= Fie		c Matter perations

Assessing Soil Quality &			Salinity	***	Soil		,		egate		RU	SLE2	SLE2	
Soil Health is a function of many complex interactions, inputs and management factors such as:	p.	9.0	Class Micro- (dS/m) bial Response EC 1:1		Respiration At optimum temp. & moisture	Lbs. CO ₂ -C/ac/day	(> 0.2	oility 5 mm		Soil Tillage Intensity Rating	Condi	oil tioning (SCI)	
 Climate Crops & Yield (i.e., biomass produced) Soil type Water Quality/Supply 	>.	8.5	Strongly Saline > 6.07	Few halophilic organisms are active	Hann	> 64	% Organic Matter	% Water Stable Aggregates	% Clay	% Water Stable Aggregates	listurbing action).		g soil OM	
 Irrigation Water Management Tillage Operations Fertilizer & Pest Management Crop Rotations 	Neutral Slightly Alkaline	7.5 7.0	Moderately Saline 3.16-6.07	Salt tolerant microbes predomi- nate	Ideal Soil Activity	32 – 64	% Orga	% Water St	%	% Water St	STIR is based on Field Operations (tillage) & its soil disturbing actions (Invert, Mix, Lift, Shatter, Aerate & Compaction). Lower STIR values = reduced soil erosion	$SCI = (OM \times 0.4) + (FO \times 0.4) + (ER \times 0.2)$	If the rating is (+), the system is predicted to have <u>increasing soil OM</u> If the rating is (-) the system is predicted to have declining soil OM	
 Residue Management Soil Amendments: Manure, mulch, effluent, gypsum, etc. 		6.5	Slightly Saline .71 – 3.16	Major microbial processes influenced	Med. Soil Activity	16-32	12	85	80	86	ons (tillag atter, Aer = reduced	FO x 0.4)	redicted to	
> Cover crops	Mod	6.0	Sa Sa 1.71	mic pro	Mod. Low	.16	8	81	60	82	erati ft, Sh lues)+(t	ı is p	
Carbon Cycling	A _I S	5.5	e e 7.1	b is S b	Soil Activity	9.5	4	77	40	78	ix, Lii IR va	1 x 0.	systen	
Biological	trong	5.0	V. Slightly Saline 0.98-1.71	Selected microbial processes affected	Very Low Soil Activity	< 9.5	2	75	30	74	on Fic er, M	(O)=	-), the	
	Very Strongly Acid	4.5	. 0.				1.2	70	20	70	(Inve	SCI	g is (+ no is (
Physical Chemical		4.0	Non Saline 0 – 0.98	Few Organisms affected	No Soil		0.8	66	10	65	R is b		e ratir ie rati	
	Ultra	3.5	Non S	Organ affe	Activity	0	0.4	53	5	60	STII			
IMPORTANT!!! Use 1 Quality Trends: i.e., is Soi									_		OM = C FO = Fi ER = So	eld Oper	ations	

Develop a Case Study/Conservation Plan	NM Producer Sustainable Workshops
	Resource Inventory Includes:
PHAL NANGLES UP (PER HARdiston)	Irrigation Water Samples
	Soil Samples
TRABER DESTRUCTION OF THE PROPERTY OF THE PROP	Plant Tissue Samples
WWW.hradenjoes.com The law amount of the adversery of the process of the adversery of the advers	Irrigation System evaluation
A PROPERTY OF THE ABOVE PROPERTY OF THE ABOV	• Soil Texture, Structure and, most importantly, Aggregate Stability
	Tillage Operations
	Fertility Inputs
2 6	• IPM
6/26/0	• Cover Crops
	Crop Rotations


Continued success of agricultural systems in our world is dependent upon the ability to maintain soil health and manage water resources through conservation planning, according to New Mexico NRCS agronomists, water quality specialist, and soil scientists. And, they are out to increase understanding of the role conservation planning 'Conservation planning seeks to take soil health and productivity from its current level and manage i ts full potential," said Ken Scheffe, state soil s o farmers, ranchers, conservationists, and

he Web Soil Survey which is on the Internet. ncorporates materials that emphasize the effects of tillage, food and fiber," said Scheffe. "Even when looking at t

rm soil productivity. This information was used this past maintain soil health and manage water resources throu

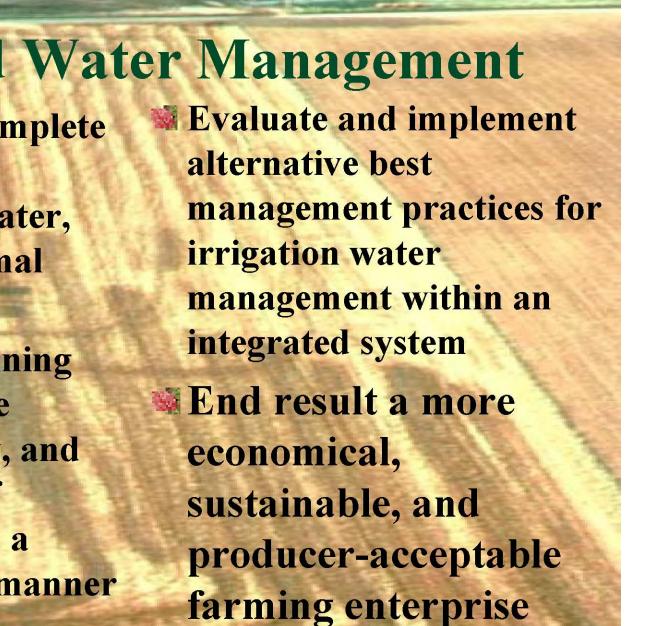
In addition, NRCS New Mexico has acquired soil quality management assures water quality, soil quality, and overall est kits so its local field and soil survey offices can assess ecosystem health is maintained. soil conditions for farmers and ranchers, and offer options and recommendations for improving soil health. Because recognizing soil health indicators is so important, NRCS

For more information about the Web Soil Survey and Integrated Water Management Handbook go to www.

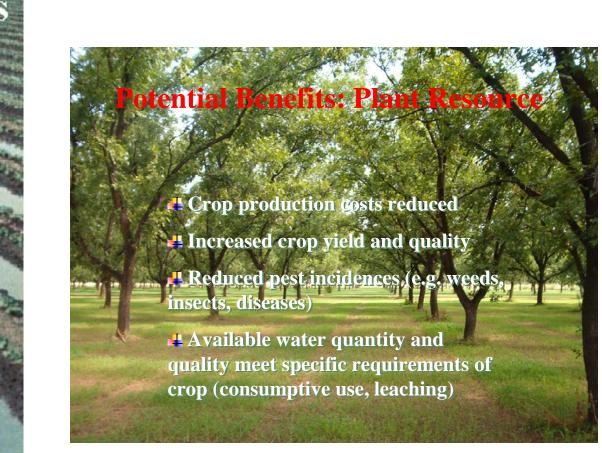
New Mexico is also scheduling workshops for farmers and <u>nm.nrcs.usda.gov</u>

NM Integrated Water Management Handbook

http://www.nm.nrcs.usda.gov/technical/handbooks/iwm/nmiwm.html, July 2008


Integrated Water Management

Handbook Purpose


ser friendly for use by planners with produce

<u>Major NRCS Contributors:</u> Linda Oyer Schef Santiago Misquez Michael Standefe

Integrated Water Management **Evaluate and implement** Integral part of complete alternative best irrigation water management within an integrated system Process of determinin End result a more economical, sustainable, and rrigation water in a producer-acceptable planned, efficient manner

