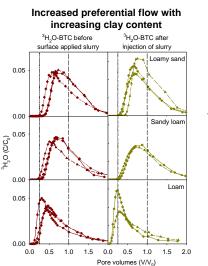
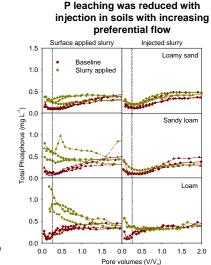


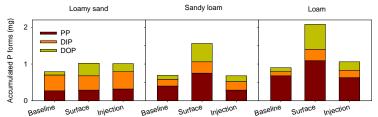
PHOSPHORUS LEACHING IN A SOIL TEXTURAL GRADIENT: INJECTION VS. SURFACE APPLICATION OF CATTLE SLURRY

Nadia Glæsner^{1&2} (nagl@life.ku.dk), Charlotte Kjaergaard², Gitte H. Rubæk² and Jakob Magid¹


¹Faculty of Life Sciences, University of Copenhagen, Denmark, DK-1870, ²Faculty of Agricultural Sciences, University of Aarhus, Denmark, DK-8830


"Slurry injection reduces P leaching in soils with preferential flow, whereas slurry injection has less impact on P leaching in soils with matrix dominated flow"

HYPOTHESIS


Two protecting mechanisms obtained by injection:

- 1. A physical protection of both reactive and nonreactive slurry components by dislocation of the slurry string away from the active flow paths for the infiltrating water
- 2. A chemical protection of reactive slurry components by optimizing the contact between slurry components and soil adsorption sites

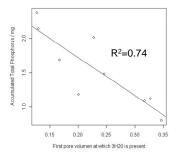
Leached P forms

PP: Particulate P, DIP: Dissolved inorganic P, DOP: Dissolved Organic P

Mass recovered P and Br

Soil	Surface applied slurry	Injected slurry	Surface applied slurry	Injected slurry
	% (P)		% (Br)	
Loamy sand	8.6	7.0	85.2	79.0
Sandy loam	27.2	-4.6†	73.6	73.7
Loam	30.2	3.6***	80.6	60.2*

† Negative values were obtained as less P was leached after injection than during the baseline study


EXPERIMENTAL DESIGN

• Intact soil cores (20*20 cm) loamy sand, sandy loam, loam

• Irrigation (2 mm h⁻¹) at near saturated conditions (-5 hPa)

 Leaching experiments: Baseline Surface application Injection

Correlation between preferential flow and P leaching

CONCLUSIONS AND PERSPECTIVES

Slurry injection provided:

Physical protection of non-reactive slurry components in loam

 \succ Physical protection of particulate P in sandy loam and loam

 \succ Chemical protection of dissolved P in sandy loam and loam

No increased protection in loamy sand

Slurry injection substiantially reduced P leaching in soils with pronounced preferential flow. This documents that slurry injection is a useful mitigation measure for minimizing leaching losses of P from finetextured agricultural soils. In sandy soils slurry injection will not reduce leaching of P.

Acknowledgements: This study was funded by the Danish Ministry of Food, Agriculture and Fisheries. Project no. 11