

The Agronomic and Economic Performance of Canola as a Biofuel Feedstock in the Northeast U.S.

Mary Carol Frier^{1,2}, Gregory W. Roth¹, Douglas D. Archibald¹, Joseph M. Perez³

(1Dept. of Crop and Soil Sciences, The Pennsylvania State University; 2Black Meadow Orchids, Inc., Centre Hall, PA; 3Chemical Engineering, The Pennsylvania State University)

Area 1 Area 2 Area 3

80.0

by location

<u>н</u> 60 0

Fig. 1. Small grains zones in Pennsylvania

Mean Temperatures by Month

Landisville Rock Springs Wellsboro

Fig. 2. Spring canola mean temperatures

Biodiesel production is increasing in Pennsylvania and demanding vegetable oil feedstock, primarily from soybean. Canola could be an alternative to sovbean; it has double the oil content of soybean and its meal by-product is an excellent high-protein livestock feed. Canola oil is also regarded as superior to sov-based biodiesel because of its lower pour point and better stability. Penn State has conducted variety trials in Centre county (winter canola) and in multiple locations (spring canola) to assess crop performance and the economic viability of both winter and spring canola.

Canola in bloom at Rock Springs, PA, variety trials

Winter canola has similar growth stages as spring canola, but has a long period of winter dormancy. The spring canola crop cycle is about 100 days. winter canola requires more than 250 days from fall sowing to summer harvest. In trials conducted at Penn State, three replications of randomized,

complete block plots were used to evaluate canola field production. Production methods, including field pre-treatment and seed bed preparation, fertilization, pesticide treatments and harvest methodology were consistently applied. Data on plant germination, vigor, winter survival, height and bloom timing and yield were collected. SAS was used to compute mean and least significant differences among varieties and

Spring canola trial

plots, left, at the

vegetative plant

stage.

Spring canola is planted in April and harvested in July.

Winter canola in bloom, below, left, at Rock Springs trials. Spring canola in pod, right at Landisville trial. In early July, winter canola is harvested; for spring canola, harvest is usually late July. The combine harvested Farm Services fields in July, 2007. Top grade canola oilseed is dark in color, dense and shiny, as shown below.

Winter Canola Evaluation

Penn State has participated in the National Winter Canola Variety Trial for several years. This trial is organized and run by the Kansas State University; it evaluates more than 35 winter canola varieties across 25+ locations from the deep South to the high plains of Wyoming. In Pennsylvania, the varieties have averaged about 50 bu/acre, with the highest yielding varieties exceeding 60 bu/acre. Plant winter survival could be as low at 40% of a good fall stand before it affects eventual yield. Consistent moisture and moderate temperatures are more predictive of yield than is the survival rate. Oil yields have ranged from 38-42% of the seed weight.

Table 1. Yield results from high-yielding varieties in the National Winter Canola Variety Trials

		2006			2007				
Variety	(lbs/acre)	(bu/acre)	w sur (%)*	lbs/acre	bu/acre	w sur (%)*	In Illinois and Ohio ,		
Abilene	3286	65.7	93	2133	42.7	82	some of these varieties		
Virginia	3215	64.3	93	2155	43.1	88	have violded more than		
Jetton	3056	61.1	92	2509	50.2	73	have yielded more than		
KS3074	3015	60.3	97	2710	54.2	87	80 bu/acre. In the South		
Baldur	2984	59.7	95	3158	63.2	80	and Southern Mid-west		
Kronos	2983	59.7	93	2453	49.1	70			
KS3067	2955	59.1	97	nt	nt	nt	yields are much lower		
KS3254	2872	57.4	97	2877	57.5	73	(<20 hu/acre) due		
KS3108	2868	57.4	95	2294	45.9	73			
VSX-2	2994	59.9	92	nt	nt	nt	primarily to high		
							temperatures and low		
Complete -	Trials						precipitation during the		
Mean	2629	52.6	95	2245	44.9	73	critical bloom and pod-		
CV	13		3	26		18	filling times		
LSD (.05)	555		NS	930		22	tilling time.		
*winter pla	nt survival in	percent of	fall stand						

"nt" means not evaluated in the 2007 National Winter Canola Variety Trial

Spring Canola Evaluation

Spring canola trials were conducted in 2007 in three climate zones across the State to evaluate the effect of temperature on canola yields and oil content. The trial locations are shown in Fig. 1.

Temperatures during the growing season in the Rock Springs and Landisville locations were higher than those in Wellsboro, as shown in Fig. 2, right. Maximum daily temperatures exceeded 90° F on 22 days in Landisville, 8 days in Rock Springs and 0 days in Wellsboro. These differences were the principle reason for the yield differences shown in Table 2, below.

Table 2, 2007 spring canola trial results

			Yield in Ibs/acre by location					
Brand	Variety	Type/Trait	Landisville	Rock Sprg	Wellsboro	Combined		
Croplan	HyCLASS 601	hyb, non	1125	1220	1320	1209		
Croplan	HyCLASS 410	hyb, RR	1092	1455	1742	1462		
Croplan	HyCLASS 712	syn, RR	1206	1646	2017	1623		
Croplan	HyCLASS 924	hyb, RR	1271	1832	2167	1756		
Croplan	Crosby	OP, RR	1273	1960	2331	1855		
Croplan	Rugby	OP, RR	1244	1735	2182	1720		
Croplan	InVigor 5550	hyb, LibLink	1225	1877	2584	1895		
Croplan	Python	hyb, Clearfield	1223	1652	1808	1561		
Monsanto	Hyola 357	hyb, RR	1425	1696	2767	1963		
Monsanto	SW Patriot	syn, RR	1442	1568	2200	1737		
Monsanto	IS7145	hyb, RR	1424	1958	2689	2024		
Monsanto	DKL 38-25	hyb, RR	1435	2075	2446	1985		
		Mean	1281	1723	2200	1730		
		CV	23.9	9.2	14.2	12.8		
		LSD (0.05)	519	277	527	362		

Spring canola trial results show that each location's average vield was significantly different from the others. The highest vielding varieties were consistently hiah across locations. In Landisville, all varieties were affected by high temperatures, and no one variety performed better than the others under these conditions. Oil yield averaged 44% at 4% seed moisture, with no significant difference across locations

Canola Economic Evaluation

Going into production with a new crop means managing both production and market risks. The new crop must be profitable enough to compensate the farm producer for taking these risks. With winter canola, the crop competes with winter wheat. Spring canola competes primarily with soybean.

Production costs for all crops can be estimated with enterprise budgets, such as have been developed in the Penn State Agronomy Guide. The cost categories and their relative importance are shown in Fig. 3 for canola, soybean and winter wheat, based on 2008 local prices, including custom harvest pricing. Winter canola costs are higher than spring canola because winter canola requires more fertilizer for fall establishment. Soybean fertilizer costs are lowest because soy does not require added nitrogen. The higher sovbean seed cost somewhat offsets the lower fertilizer cost. Other costs are fairly similar across crop type.

Total costs per acre for each crop are estimated at:

In winter wheat, the sale of straw at

is often credited against the cost of

arowing the crop in PA. This credit.

about \$150/acre, reduces total

The difference between market price

and production cost is considered to

be the profit per acre. In Fig. 4, the

arrowed lines indicate when profit

per acre is equivalent between sovbean and spring canola (pink)

and winter wheat and winter canola

(blue). Winter wheat without the

straw credit is shown in green.

Sovbean and winter wheat bushels

are based on historic state average

vields: 45 bu/acre for sovbean and

In conclusion, spring canola

vields would have to be near 50

bu/acre for equivalence to

soybean; winter canola yields

should be 60 bu/acre for

equivalence to winter wheat plus

53 bu/acre for winter wheat.

straw at the prices shown.

costs to \$87.77 per acre.

Soybean	\$175.03
Spring Canola	213.36
Winter Canola	235.63
Winter Wheat	237.77

Fig. 3. Production cost categories and their value per acre

Fig. 4. Profit equivalents in bushels of canola for bushels of sovbean and winter wheat.

Further study More multiple location trials of winter canola commercial varieties should be conducted and spring canola trials continued to further understand variety performance by location. Oil quality tests for biodiesel and other industrial uses would help to estimate the value of canola oil produced in the Northeast U.S. for these uses.

Acknowledgments. Technicians Mark Antle and Vivian Baumer for their able assistance. Croplan Genetics and Monsanto for spring canola seed and Kansas State for winter canola seed and for running the National Winter Canola Variety Trial. The PA Department of Agriculture for funding.