

¹ Department of Geography, University of Kansas, Lawrence, KS 66046; ² Department of Environmental Sciences, Rutgers, New Brunswick, NJ 08901

Introduction

1. While many studies have examined the fractal structure of small aggregates, very few have characterized the mass-volume relationship of large aggregates and peds.

This relationship can be expressed as: $M(d) = k_m d^{D_m}$ *M*(*d*) = aggregate mass of diameter *d* where, **k**_m = aggregate mass of unit diameter

D_m = fractal dimension of mass

 $L = \text{lacunarity} = var[(k_m)_i]$ and. $M(d_i)$ $(k_m)_i = -\frac{1}{2}$

2. By applying multistripe laser triangulation (MLT) technology, we sought to characterize the fractal mass-volume relationship of aggregates and large peds over a wider range of scales than has been previously possible. Additionally, we examined the application of this technology to examine horizon-scale pore architecture.

We sampled two plots representing an unplowed Native Prairie and an adjacent cultivated field that has been eroded ~20-50 cm since the beginning of the last century.

Both the surface and the Btss1 horizon was sampled from each field.

Methods

- 3. Six large (500 1000 cm³) aggregates/clods were collected from a hand-excavated pit at each sampling location.
- 4. Volumes of large clods were measured with a MLT scanner and broken into smaller aggregates.

MLT scanner and large clod

Characterization of Soil Structure and Pore Architecture from the Aggregate to Horizon Scale

Daniel Hirmas¹, Daniel Giménez², Xingong Li¹, and Vandana Subroy²

Results

Digital scan of the Control Plot Btss1 horizon

aggregate volumes.

Breakpoints for the piecewise regression did not consistently occur at the break between the two methods used suggesting that both methods accurately measure volumes at different sizes.

ores are d measured

Horizon	Mean Pore						Organic		Bulk Density			
	Area (mm ²)	Perimeter (mm) Thio	Thickness (mm)			Carbon (%)		(g cm ⁻³)			
Native P	rairie									-		
A	38.1±374	38.1±374 41.6±322		0.50±6.6			2.95		1.14±0.04			
Btss1	10.8±56	22.4±78	0.60	0.60±5.8			0.51		1.38±0.04			
Control F	Plot											
Ар	6.1±29	25.7±86	0.32	0.32±5.3			4.27		1.01±0.03			
Btss1	3tss1 6.4±33 18.8±53 0.4			0.44±4.7		0.64		1.41±0.07		_		
boil properties, fractal model barameters, and mean pore		Area	Area 1	Per.	Thi.	00	BD	D _m	k _m	L		
neasurements were related			Per. Thi.	0.95 0.32	1 0.08	1			Corre Ma	elation atrix		
using a correlation matrix.		OC	0.23	0.52	-0.72	1						
			BD	-0.26	-0.55	0.66	-1.00	1				
			D_m	0.30	0.05	1.00	-0.74	0.68	1			
				0.00	0 00	0 5 2	0.00	0 0 4	O E E	4		
er MLT s	canning		K _m	-0.62	-0.80	0.53	-0.00	U.04	0.55			

ΠΟΠΖΟΠ	Mean Pore						Organic		Bulk Density		
	Area (mm ²)	Perimeter (mm)	Thic	Thickness (mm)			Carbon (%)		(g cm ⁻³)		
Native Pl	rairie									_	
A	38.1±374	41.6±322	0.50)±6.6		2.95		1.14±	:0.04		
Btss1	10.8±56	22.4±78	0.60)±5.8		0.51		1.38±	:0.04		
Control F	Plot										
Ар	6.1±29	25.7±86	0.32	2±5.3		4.27		1.01±	:0.03		
Btss1	6.4±33	18.8±53	0.44	0.44±4.7		0.64		1.41±0.07			
	ameters, and mean pore										
			•						D _m	` m	
ramete	ers, and me	an pore	Area	1	1				<u> </u>	<u> </u>	
ramete easure	ers, and me ments were	an pore e related	Area Per.	1 0.95	1				Corre	ation	
ramete easure	ers, and me ments were	an pore e related	Area Per. Thi.	1 0.95 0.32	1 0.08	1			Corre Ma	elation	
ramete easure ing a c	ers, and me ments were orrelation r	an pore e related matrix.	Area Per. Thi. OC	1 0.95 0.32 0.23	1 0.08 0.52	1 -0.72	1		Corre Ma	elation	
ramete easure ing a c	ers, and me ments were orrelation r	an pore e related natrix.	Area Per. Thi. OC BD	1 0.95 0.32 0.23 -0.26	1 0.08 0.52 -0.55	1 -0.72 0.66	1 -1.00	1	Corre Ma	elation Itrix	
ramete easure ing a c	ers, and me ments were orrelation r	an pore e related natrix.	Area Per. Thi. OC BD D_m	1 0.95 0.32 0.23 -0.26 0.30	1 0.08 0.52 -0.55 0.05	1 -0.72 0.66 1.00	1 -1.00 -0.74	1 0.68	Corre Ma	elation trix	
ramete easure ing a c r MLT s	ers, and me ments were orrelation r	an pore e related natrix.	Area Per. Thi. OC BD D_m k_m	1 0.95 0.32 0.23 -0.26 0.30 -0.62	1 0.08 0.52 -0.55 0.05 -0.80	1 -0.72 0.66 1.00 0.53	1 -1.00 -0.74 -0.86	1 0.68 0.84	Corre Ma 1 0.55	elation itrix	

- 5. These aggregates were likewise measured for volume by ei on larger aggregates or saturation in a glycerine/water mix in kerosene on smaller aggregates.

A total of 18 large aggregates and approximately 120 small aggregates per horizon were measured.

Small aggregates saturated in glycerine/water

Displacement in kerosene

by shape.

We used roundness, *R*, as the shape parameter: A = cross-sectional area where, d, = longest diameter in the cross section

Normalized diameter, where,

We used ImageJ softw small aggregates and

scans of the two excavation walls.

8. Linear regression analyses show that the mass-volume relationships are fractal with the exception of the Btss1 horizon from the Native Prairie soil.

Regressions were run on the linearized model: $\log M = \log k_m + D_m \log d$

9. Piecewise regression confirmed that the MLT scans accurately extended the range of

10. Holes in the digital scans of excavation walls were used as a proxy for soil

6. Aggregate diameter was determined by taking the cubic root of the measured volume and normalizing

$$P = \frac{4A}{\pi\sqrt{d_{I}}}$$

$$d_n = \sqrt[3]{V} \sqrt{R}$$

7. Pore architecture was assessed using data from MLT

Summary and Future Work

Acknowledgements

This work was funded in part by the KU College of Liberal Arts and Sciences. We thank Brian Platt for his assistance obtaining and processing digital scans and Tanner Popp and Eric Zautner for help in the field. This work was conducted with permission at the KU Field Station and Ecological Reserves (KSR).

RUTGERS

12. We found a fractal mass-volume relationship throughout the wide range of aggregate sizes used in this study (0.05 - 1000 g) and a strong correlation between fractal dimension and pore thickness.

13. While MLT scanning shows enormous promise in quantitatively describing soil architecture, particularly for aggregate/ped structure and pore morphology, the next step is to relate these descriptions to pedogenic processes, water flux, and land-use.