

Management Effects on Yield in Organically Grown American Skullcap (Scutellaria lateriflora)

Santosh Shiwakoti¹, D.A.Shannon¹, C. W.Wood¹, N. Joshee², K. Lawrence³

¹Department of Agronomy and Soils, Auburn University, Auburn, AL ² Agriculture Research Station, Fort Valley State University, GA ³Department of Entomology and Plant Pathology, Auburn University, Auburn, AL

INTRODUCTION

Skullcap (Scutellaria spp.) is a member of the mint family (Labiatae or Lamiaceae). The genus Scutellaria includes 300 species (Joshee et al. 2002). Scutellaria *lateriflora* is the most commonly grown and marketed species (Wills and Stuart 2004). S .lateriflora is indigenous to North America growing in wet places from Canada to Florida and westward to British Columbia, Oregon and New Mexico (Bergeron et al. 2005). Also known as American Skullcap, Virginia Skullcap, Mad Dog Skullcap or Blue Skullcap.). S. *lateriflora* is a perennial plant that grows about 0.5 meter high with blue colored flower and helmet shaped fruit (Bergeron et al. 2005). Flavonoids, volatile oils, iridoids, diterpenoids, waxes and tannins are the chemical constituents found in Scutellaria genus (Wren 1998) which makes them pharmacologically important. Skullcaps have been used as a sedative, nervine, antispasmodic and anticonvulsant (Millspaugh 1974). The aqueous extract of the flowering parts of S.lateriflora has been traditionally used by Native Americans as a nerve tonic and for its sedative and diuretic properties (Burlage 1968). Similien (2009) demonstrated that American Skullcap can be successfully grown in Alabama. Highest yields were obtained with partial shade, irrigation and fertilization. Research on optimum timing and frequency of harvest of American Skullcap for yield is lacking.

First year harvest table (2008)		Second year harvest table (2009)							
Treatment	Date of	Growth stage	Treatment	Date of	Growth stage		eed control was done manually and Trilogy		
	harvest			harvest		ì	(neem oil fungicide) was sprayed for powdery mildew		
2 har/season	07/03/200	Prime bloom	3 har/season	06/12/200	Prime bloom		lew		
	8			9			ll the harvestings were done above ground		
1 har/season	07/16/200	Post bloom and	2 har/season	07/08/200	Late bloom	and sten	ns and leaves with pruning sheer.		
	8	early seed set		9	early seed set				
2 har/season	10/03/200		3 har/season	08/06/200	Prime bloom		d harvest in second season was not possible		

LIADVECTO O MANACEMENT

RESULTS (graphs) yield in a first harvest 1200.0 3000.00yield in a second harvest 1000.0 **д** 800.00 **0** 2000.00-**0** 600.00 **t** 1000.00-

OBJECTIVES

The objectives of this study are to: ≻To determine whether the frequency of harvest has positive /negative effect on total yield

RESULTS:

> In 2009, third harvest in second season (2009) was not possible because of die-off. >Yield of 2 harvests per season was significantly higher than 1 harvest per season (Fig:1).

> Percent dry matter in season 1 was significantly higher with 2 harvests per season than in 1 harvest per season (Fig: 3)

>In second year, no significant differences were observed for total yield and dry matter content (Fig:2 and Fig:4).

First harvests of both treatments were much higher than the second harvests of both treatments in second season (Fig:5).

>Powdery mildew (*Erysiphe*), root rot due to *Pythium* and Cucumber Mosaic Virus (CMV) were identified in the plots. CMV was localized in border plots (see photo 5 and

DISCUSSION

>Two harvests may be made in the first and second years of production. A third harvest might have been possible in second season in absence of *Pythium* infection Plant die-off due to *Pythium* infection may be attributed to unusually high summer rainfall

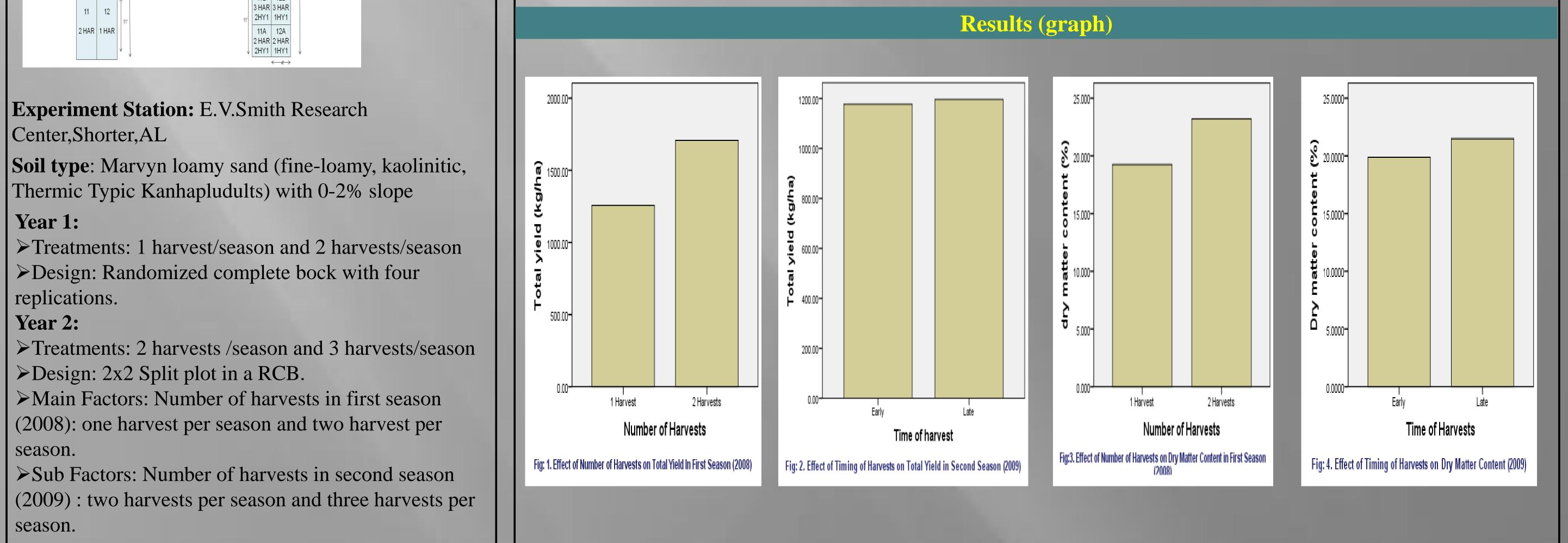
> Powdery mildew is common, especially under shade (Similien, 2009) but is easily

≻To determine how many times plant should be harvested in a season.

METHODS

Experimental Design and Treatments:

American Skullcap EV Smith - Year 1		American Skullcap EV Smith - Year 2	
41 42		41B 42B 3 HAR 3 HAR	
1 HAR 2 HAR		1HY1 2HY1 41A 42A 2 HAR 2 HAR	
		1HY1 2HY1	
31 32		31B 32B 2 HAR 3 HAR	Avorago air
2 HAR 1 HAR		2HY1 1HY1 31A 32A	Average air temperature: 22
$4^{\prime} \rightarrow 3^{\prime}$	53'	3 HAR 2 HAR 2HY1 1HY1 53'	
		21B 22B 3 HAR 2 HAR	
1 HAR 2 HAR		1HY1 2HY1 21A 22A	
		2 HAR 3 HAR 1HY1 2HY1	Average relative humidity: 66.1
	1	11B 12B ³	
11 12	11"	3 HAR 3 HAR 2HY1 1HY1	
2 HAR 1 HAR		11A 12A 2 HAR 2 HAR	
Ý	↓	$\begin{array}{c c} & 2HY1 & 1HY1 \\ \hline & & \hline & & \hline & & \hline & & & \hline & & & \hline & & & & \hline & & & & & \hline & & & & & \hline & & & & & & \hline & & & & & & \hline & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & & \hline & & & & & & & & & \hline & & & & & & & & & \hline & & & & & & & & & & \hline & & & & & & & & & & & \hline & & & & & & & & & & & & & \\ & & & &$	


Photo 4: Powdery Mildew Infestation (2009)

erature: 22.62

ge relative

Photo 5: Severely Infected with Powdery Mildew and *Pythium* (2009)

Photo 6 :Loss of Plant Stand Due to Powdery Mildew and *Pythium* (2009)

controlled with foliar sprays

CONCLUSIONS

American Skullcap can be grown successfully in Southeast. At least two harvests per season may be attained if the rainfall is adequate and diseases are controlled. The experiment should be repeated to know the effect of three harvests per year in second

REFERENCES

Bergeron, C. Gafner, S. Clausen, E. Carrier, D. J. 2005. Comparison of the chemical composition of extracts from *Scutellaria lateriflora* using accelerated solvent extraction and supercritical fluid extraction versus standard hot water or 70% ethanol extraction. Journal of Agricultural and Food Chemistry. 53: 8, pp. 3076-3080

Burlage, H.M. 1968. Index of plants of Texas with reputed medicinal and poisonous *properties.* Austin, TX: Published by the author

≻Joshee, N., T.S. Patrick, RS. Mentreddy, and A. K. Yadav. 2002. Skullcap: Potential medicinal crop, pp. 580-586. In: J. Janick and A Whipkey (eds.). Trends in new crops and new uses. ASHS Press, Alexandria, VA

Millspaugh, C.F. 1974. American Medicinal Plants, Dover, New York Similien, A. 2009. Shade, Irrigation and Fertility Effects on Biomass Production and Flavonoid Content in American skullcap. Unpublished Thesis Draft. Department of Agronomy and Soils. Auburn University.AL.USA

≻Wills, R.B.H., D.L.Stuart. 2004. Generation of High Quality Australian Skullcap Products. A Report for the Rural Industries Research and Development Corporation. Australian Government. RIRDC publication No.04/020 ≻Wren, R.C. 1998. Potters New Cyclopedia of Botanical Drugs and Preparations. C.W. Daniel, Essex AKNOWLEDGEMENT This research was funded by the USDA Cooperative State Research, Education, and Extension Service (CCREES) 1890 Capacity Building Grants Program project, Scutellaria as a medicinal crop: cryopreservation, hairy root culture, organic farming and anticancer activity, through a subcontract fro Fort Valley State University.