The Responses of Soil Microbial Community to Glyphosate Stress Studied at Biochemical, Catabolic, and Genetic Levels

Yonghua Yang

State Key Laboratory of Pollution Control and Resource Reuse, NJU-NJFU Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, P. R. China;

Key words:

Biolog, DGGE, Glyphosate, PLFA, Real-time PCR, Soil microbial community

Correspondence

Prof. Dr. Yonghua Yang School of Life Sciences, Nanjing University, Nanjing 210093, P. R. China Tel.: +86-25-83594220, Fax: +86-25-83305493 E-mail: YangYH@nju.edu.cn

Abstract

Glyphosate is a non-selective and post-emergence organophosphate herbicide that is widely used in agriculture. We report here the *in situ* and *ex situ* effects of glyphosate on the soil microbial communities using culture-independent patterns of microbial biomass, phospholipid fatty acids (PLFAs), 16S rDNA denaturing gradient gel electrophoresis (DGGE), real-time quantitative PCR, and culture-dependent methods of plate enumeration and community level catabolic profiles (CLCPs).

The results showed microbial biomass reduced by 45%, as well the numbers of cultivable bacteria and fungi decreased by 84% and 63%, respectively. However, phosphobacteria were significantly enriched by 39 folds.

PLFAs analysis showed fungal and part of gram-positive (G+) bacterial biomass were restrained remarkably by 29% and 21%, respectively, followed by a significant increase (38%) in the ratio of bacterial to fungal PLFAs in glyphosate input soils.

However, the CLCPs showed high dosage input of glyphosate had a significant boost on the catabolic activity of gram-negative (G-) bacterial community.

Furthermore, DGGE analysis indicated that the genetic diversity of bacterial community decreased in the soil contaminated by high dosage of glyphosate. Among 18 sequenced DGGE bands, 13 bands were related to G- bacteria.

Real-time PCR result indicated that copies of the glyphosate tolerance gene, 5-enolpyruvylshikimate-3-phosphate synthase (*EPSPS*), increased significantly in high glyphosate input soils.

In conclusion, our results demonstrated comprehensively that fungi and G+ bacteria were inhibited while G- bacteria played an important role in degrading glyphosate under stress of high glyphosate dosage. Soil fungi have been harmed even in the recommended concentration of glyphosate.

Soli description and experimental design	Analysis indices
The loam soil was collected from a site without	(1) Soil microbial biomass carbon, and soil o
agrochemical use and then loaded into pots. Three	carbon analyses
treatments were defined:	(2) Phospholipid fatty acids (PLFAs) analysis
GLY0: no-glyphosate control;	(3) CLCPs of soil G- & G+ bacteria
GLY1: recommended dosage glyphosate input	(4) Quantification of cultivable ba
with 50 mg active ingredient kg ⁻¹ soil;	phosphobacteria and fungi
GLY10: high dosage glyphosate input with 500	(5) 16S rDNA-DGGE analysis
mg active ingredient kg ⁻¹ soil;	(6) Real-time PCR analysis of <i>EPSPS</i> gene
CONTROL: soil were treated with distilled water.	

•••

- rganic
- cteria,

Treatment	C_{mic} (µg.g ⁻¹)	$C_{org} (mg.g^{-1})$	N_{tol} (mg.g ⁻¹)	$P_{tol} (mg.g^{-1})$	C _{mic} / C _{org}	Corg / Ntol	Corg / Ptol
GLY0	150.0 a	15.9 a	1.7 a	0.49 b	0.0094 a	9.24 a	3.25 a
GLY1	163.2 a	14.9 a	1.4 a	0.49 b	0.011 a	10.00 a	2.84 a
GLY10	82.1 b	16.4 a	1.4 a	1.07 a	0.005 b	10.60 a	1.36 b

Table 1C, N and P profiles in the soils ^a

^{*a*} Data are expressed as "mean (standard deviation) significant difference label". Means between any two soils in a column followed by a same lowercase letter indicate no significant difference using ANOVA LSD test at p<0.05, n=4. Soil weight is based on oven-dried soil.

Table 2 The concentration of PLFAs associated with different components of microbial communities in the soils^{*a*}

Soil sample	Total (mmol.g ⁻¹ soil)	Bacterial (mmol.g ⁻¹ soil)	F ungal (mmol.g ⁻¹ soil)) Fungal:Bacterial
GLY0	16.08 a	8.67 a	0.59 a	0.069 a
GLY1	16.43 a	9.90 a	0.42 b	0.043 b
GLY10	16.39 a	9.64 a	0.41 b	0.043 b

Table 4	CFU enumeration of cultivable microbes in the soils
---------	---

Soil sample	Bacteria ($\times 10^5 \cdot g^{-1}$)	Fungi (× $10^5 \cdot g^{-1}$)	Phosphobacteria ($\times 10^5 \cdot g^{-1}$)
GLY0	186.33 a	99.67 a	0.933 c
GLY1	173.67 a	23.00 b	21.90 b
GLY10	29.00 b	37.33 b	37.17 a

Fig.1 Abundance of phospholipid fatty acids (PLFAs) in the three soil samples, G-: gram negative bacteria, G+: gram positive bacteria

Fig.3 The changes of AWCD value for the three soil microbial communities during whole incubation. Bars indicate standard deviation (SD), n=3. G-: gram negative bacteria, G+: gram positive bacteria

Fig.4 Principal Component Analysis (PCA) of community level catabolic profiles (CLCPs) based on Biolog plates for the three soil samples, Bars indicate standard deviation (SD), n=3. G-: gram negative bacteria, G+: gram positive bacteria.

Fig.5 DGGE profiles of amplified 16S rDNA fragments from soil and Biolog samples treated with glyphosate. The letters from a to l indicate the positions of the bands.

Table 4Sequence analyses of bandsexcised from DGGE gels derived frombacterial 16S rDNAs extracted from the soilsand Biolog microplates

Fig.7 Gene copies in different soil samples determined by real-time quantitative PCR, EPSPS: 5-enolpyruvyl shikimate-3-phosphate synthase gene.

Genbank accession No.	Bacterium with related bacterial sequence	1 Treatment	Related to G-/G+ bacteria
EF452410	Bacillus clausii strain	GLY0 (soil)	G- bacterium
EF452411	Flavobacterium sp.	GLY0 (soil)	G- bacterium
EF452412	Uncultured delta	aGLY0 (soil)	G- bacterium
	proteobacterium		
EF452413	Uncultured Flavobacteria	aGLY0 (soil)	G- bacterium
	bacterium		
EF452414	Uncultured Acidobacteria	aGLY0 (soil)	G- bacterium
	bacterium		
EF452415	Uncultured bacterium	GLY0 (soil)	Unknown
EF452416	Uncultured bacterium	GLY0 (soil)	Unknown
EF452417	Uncultured bacterium	GLY0 (soil)	Unknown
EU255829	Burkholderia cenocepacia	GLY0 (Biolog)	G- bacterium
EU255817	Pseudomonas sp.	GLY0 (Biolog)	G- bacterium
EF452371	Uncultured soil bacterium	GLY1 (soil)	G- bacterium
EF452372	Uncultured bacterium	GLY1 (soil)	G- bacterium
EF452373	Ralstonia sp.	GLY1 (soil)	G- bacterium
EU255854	Gamma proteobacterium	GLY1 (Biolog)	G- bacterium
EU255852	Burkholderia sp.	GLY1 (Biolog)	G- bacterium
EF452374	Uncultured bacterium	GLY10 (soil)	Unknown
EF452375	Uncultured hydrocarbo	nGLY10 (soil)	Unknown
	seep bacterium		
EU255862	Devosia sp.	GLY10(Biolog)	G- bacterium

Acknowledgements

This research was partially supported by the grants from the Natural Science Foundation of China (NSFC)(No. 30971871) and the Important National Science & Technology Specific Project (2008ZX08011-003). We are very grateful to Prof. Shuijin Hu in Department of Plant Pathology, North Carolina State University for his helpful comments in revising the manuscript.

Thanks for your attention!