Environmental Factors Relating to Landscape Variation in Soil Carbon Fractions in Florida.
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Introduction

Carbon (C) is a spatially and chemically dynamic component in the soil landscape. The dynamic pro-
cesses controlling the spatial variability of C fractions may be explored by analysis of environmental infor-
mation correlated to soil C. Some examples of potential environmental correlates are soil map-unit, vegeta-
tive indices, rainfall, and elevation. Environmental correlation models may be developed to quantify total
soil C and chemical C fractions in a soil-landscape and may help to understand the processes and dynamics
of the C cycle. One type of environmental correlation model is the soil factorial model. Soil factorial models
relate variability of soils into key conceptual genetic gradients (e.g. SCORPAN: soil, climate, organisms, re-
lief, parent material, age, time). Digital soil mapping requires the production of a statistical, geostatistical,
or mathematical model to predict soil properties, and may be based on the SCORPAN model. There are sig-
nificant challenges to implement environmental correlation models based on large datasets of predictors
due to the large computational infrastructure needed to manage the data and models.

Objective

Identify parsimonious sets of environmental variables for large extent appli-
cation of models of soil C fractions.

Materials and Methods

Experimental Design

A statewide dataset was collected at 1014 sites from the top 20 cm of Florida soils. A stratified random spatial sam-
pling design (n=1014) was developed to efficiently cover the range of soil-landscape and environmental factors controlling
soil C distribution and the range of C fractions. Points were located and mapped by a differentially corrected GPS (fig. 1).
Four 20 x 5.8 cm soil cores were collected from each of the sample locations. Oven-dry bulk density was measured . All C
measurements refer to this fine-earth fraction of the soil on a kg m™ basis for a 20 cm surface soil profile.

Soil Carbon Measurements

Total soil C (TC) and inorganic C (IC)
were measured by gas analyzer (Shimadzu TOC
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Figure 1. A random stratified sampling design (strata: land cover—soil or monthly vegetation indices. Some variables
suborder) was implemented for the measurement of soil C fractions were collected at multiple scales such as digital
elevation models (30, 90, and 1000 meters).
Some variables such as LANDSAT and MODIS

products are raster images while others such as SSURGO soil maps and geologic provinces are mapped as polygons. The envi-

including soil organic carbon (SOC).

ronmental variables were organized by SCORPAN factors and converted to a common 30 meter grid resolution. See tables 1

and 2 for a more detailed summary of environmental variables.

Data Mining Approach

Few traditional modeling approaches are able to handle the heterogeneous nature of the dataset collected here.
However, regression tree and ensemble regression tree methods offer opportunities to model complex, high-order interac-
tions between SOC and large sets of environmental data. These data mining methods are non-parametric, can handle differ-
ent data types, and large sets of predictor variables. We use the random forest method (Brieman, 2001) for model produc-
tion and comparison due to the minimal parameter adjustment necessary and low sensitivity to parameter settings. A train-
ing/testing framework was used for model fitting and assessment. The 1014 sites were randomly divided into calibration and
validation datasets using a 70/30 split. Random forest models were fit to the calibration datasets while model fit statistics

were calculated from the test dataset.
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Figure 6. Validation results from SCORPAN factor group random forest models of soil organic C

(SOCQ), recalcitrant C (RC), and hot water extractable C (HC) fractions. Percent change in root

mean squared error (RMSE) indicates reduction in RMSE of the single factor group model as
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Table 1. Brief listing of some environmental variables used to model SOC, RC, and HC.

SCORPAN

Factor n Important properties

Example Variables

Soil 28  SSURGO attributes: taxonomy, drainage class, polygon, mixed continuous and categorical
texture, om, albedo

Climate 38 monthy average precip, mintemp, maxtemp,  multiple raster resolutions (1-4 km)
annual averages

Organisms 99 land-use, land-cover, and ecoregion classifica- mixed polygon and raster datasets, mul-
tions tiscale
LANDSAT and MODIS remote sensing products multitemporal and multiresolution rasters
(vegetative indices, phenology, spectral bands)

Relief 15 Digital Elevation Models (DEM) National Eleva- multiple resolutions (30, 90, 1000 meter)
tion Dataset, USGS elevation, Hydro 1K
(elevation, slope, topographic wetness index)

Parent Material 5 Physiographic province, surficial geology large polygons

Results and Discussion

Full Model Performance and Variable Ranking

Random forest models of SOC and RC performed moderately well, and substantially better than HC
models (fig. 3). The performance of these models is sufficient to produce digital soil maps of C fractions,
however the large set of raster images needed to produce a map are difficult to manage computationally,
particularly in regard to sophisticated data mining models such as random forest models.

Variable importance measures (fig. 3 d-f) highlight some of the processes at work in Florida’s land-
scape to control C distribution. Soil taxonomy, soil properties, land-cover/land-use (LCLU), and hydrologic
properties are key variables indicating that an interaction between soil, plant communities, and soil profile
moisture are controlling C fraction distribution in the landscape (see table 2 for a listing of names and de-
scriptions for some important variables). Geologic variables were also prominent indicating different equi-
librium states of C fraction content for different geomorphology, age, and types of surficial materials.

Incremental Variable Performance

Figure 4 shows the incremental improvement of root mean squared error (RMSE) of random forest
models as predictor number (n) increases from 5 to 185. For each soil C fraction there is a point at which
additional variables do not provide model improvement. For SOC this occurs somewhere around 25 varia-
bles, while for RC and HC about 100 variables are needed to maximize RMSE.

As predictor count increases, so too does the likelihood that redundant information is present in the
dataset. This is undesirable to different degrees depending on the regression model chosen. Some, like ran-
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Figure 3. a-c. Validation plots visually show the performance of random forest models of soil organic C (SOC), recalcitrant C
(RC), and hot water extractable C (HC). d-f. Variable importance plots show the relative ranking of contributions from the

top 25 variables form each training model (see table 2 for a listing of names and descriptions for some important variables).
Percent increase in mean squared error (%IncMSE) indicates the improvement a given variable provides to a random forest

model compared to its random permutation.
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The success of soil

variables is largely

due to hydrologic attributes highlighting the process linkage between soil moisture and C processes. The
importance of organism variables indicates the importance of biomass productivity and plant communities
on C fraction levels. Relief repeatedly scored worse than other factor groups. This is contradictory to what
actually happens in Florida’s relatively flat landscape. Small variations in topography can lead to large differ-
ences in hydrology and readily observable differences in C accumulation. The poor performance of relief
variables is more likely due to the quality, scale, and relative error of the elevation data available for Flori-
da. The low gradients across most of Florida result in poor interpolation of hypsographic lines and subse-
guently noisy derivatives and interpolation artifacts. More accurate and finer resolution elevation data

might be more useful than these results indicate.

Conclusions

This research addresses model development and implementation issues that provide challenges to
estimate soil C fractions across a large subtropical region composed of diverse soil-hydrology and land uses.

o Prediction models for TC and RC showed higher accuracy when compared to HC potentially due to the
spatio-temporal dynamics of labile C, which makes it challenging to achieve good predictions.

« Overparametrization of digital soil prediction models was addressed with a novel data reduction meth-
od focused to minimize prediction errors AND delineate minimal environmental predictor datasets.

« A relatively small set of 25 continuous variables is nearly as successful as a 185 variable categorical-
continuous dataset to model SOC.

« Key environmental predictors were identified which related to SOC, RC, and HC, respectively. Soil-
hydrologic and taxonomic as well as vegetation/biomass, land use, and phenology properties showed
the highest predictive capabilities to infer on soil C forms.

« Interestingly, climatic properties which represent the long-term forcings of global climate change in FL
did not show a close linkage to soil carbon.

Table 2. Important variables for the prediction of soil C fractions.

SCORPAN Variable Description

flcdl2004 NASS cropland datalayer classification

IcluffwO3orig Florida Fish and Wildlife LC/LU

IcluffwO3flcp Florida Fish and Wildlife LC/LU

Ifireexvegtyp LANDFIRE existing veg. type

Isatb4 LANDSAT band 4

nbcdbawht national biomass carbon dataset basal area weighted height
precipoct monthly average precipitation

ssgoaws050wta SSURGO depth weighted available water supply to 50 cm
ssgodrncls SSURGO drainage class

ssgodw200M SSURGO depth weighted organic matter

ssgodw20Sand SSURGO depth weighted sand

ssgodw?20Silt SSURGO depth weighted silt

ssgoflsoilrunoff SSURGO Florida soil runoff potential

ssgogreatgroup SSURGO taxonomic great group

e B RV BV, R, R V. R, R, BV, BV, BV, RV BV B . R e e e e e e le)

ssgohydgrp SSURGO hydrologic group

ssgohydrat SSURGO hydric rating

ssgomuck SSURGO series name 'muck’ indicator
ssgoorder SSURGO taxonomic order
ssgoreactioncl  SSURGO taxonomic reaction class
ssgoslope SSURGO slope

ssgosuborder SSURGO taxonomic suborder

surgeo surficial geology




