

Eastern gamagrass (variety Bumpers) in 2nd year of production, 2010

Plant height ranged from 0.8 to 1.3 m

Switchgrass (variety Alamo) in 2nd year of production, 2010

Plant height ranged from 1.3 to 2.1 m

Designing Biomass Cropping Systems for Sustainable Bioenergy Production Dr. Steven Green, Rakesh Awale, Jane Khatenje

Rat	ion	ale

• Biofuels are an alternative source of transportation fuels produced by • Determine nutrient use efficiencies of various biomass energy crops and various nutrient sources organic materials

• Second generation biofuels will come from cellulosic materials from dedicated biomass crops

 An understanding of the impact these crops have on the soil is extremely important in terms of the sustainability of growing fuels from dedicated biomass crops

Treatments

Biomass species

- switchgrass (Panicum virgatum)
- switchgrass/big bluestem (Andropogon gerardii) mix
- eastern gamagrass (Trispsacum dactyloides)
- photoperiod sensitive high biomass sorghum (Sorghum bicolor)
- high biomass sorghum rotation with soybean

Nitrogen sources

Experimental design

- urea
- poultry litter
- municipal biosolids
- no nitrogen

5 plant species by 4 nitrogen sources with 4 replications

Preliminary Data

 Table 1. Effect of fertilizer sources on high biomass sorghum plant
heights, dry matter yield, and N uptake.

Fertilizer Source	[†] Mean Plant Height	[†] Mean Dry Matter (Mg/ha)	[†] Avg. Nitrogen Uptake (kg/ha)	- β glucosidase activity (μg g ⁻¹ soil h ⁻¹) 0-10 cm soil depth								
	(m)			Cropping systems	No N applied		Urea		Poultry litter		Biosolids	
urea	4. 41 ^a	23.13 ^a	153.80 ^a		2009	2010	2009	2010	2009	2010	2009	2010
poultry litter	4.27^{ab}	24.35 ^a	109.64 ^{ab}	Gamagrass	92.93	109.93	133.18	162.49	135.94	163.55	110.19	133.37
biosolids	3.98 ^b	21.78^{a}	107.19 ^b	Gaillagiass	92.93	109.93	133.10	102.49	133.94	103.33	110.19	
none	3.45 ^c	17.30 ^b	62.67^{c}	Biomass	121.78	140.41	112.61	135.71	125.95	168.28	124.19	147.6
⁺ Means with the level of significan	same letter within a colu ce	umn are not significantly	different at the 0.05	Sorghum Biomass	117.63	134.77	159.81	171.84	101.22	133.84	113.58	167.37
C				Sorghum								
				rotation								
				Switchgrass mix	134.88	168.44	132.84	181.8	140.50	204.04	134.07	165.17
				Switchgrass	94.64	120.96	107.77	154.67	132.12	192.76		

This project is supported by a grant from the U.S. Department of Energy

Objectives

• Determine the effect of various biomass energy crops and various nutrient sources on soil health properties such as to include soil organic carbon, microbial activity, and aggregate stability

- Monitor changes in soil health attributes over time
- Monitor yields over time

Analyses/properties monitored

Biomass yield Nitrogen use efficiency Nitrogen uptake

Biomass carbon

- Soil carbon and nitrogen Microbial activity Active soil carbon C and N mineralization
- Aggregate stability
- Infiltration rates
- Runoff water quality

Table 2. Effect of nitrogen source and bioenergy crop on β glucosidase activity.

Harvest of high biomass sorghum at the ASU Farm Complex, Jonesboro, AR 2009

Bioenergy Research plots at the ASU Farm Complex, Jonesboro, AR

Plots were established Spring 2009

Plots are 7.3 by 27.4 m