

Asim Biswas^{* 1}, Eric Lamb² and Bing Cheng Si¹

Direct and Indirect Controls of Soil Water Storage in a Hummocky Landscape ¹ Department of Soil Science, ² Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

1. Introduction

- Soil water is the main limiting factor in semi-arid agriculture and a key element in environmental health.
- Topographic indices, soil texture, vegetation, and water table depth control soil water storage (SWS) at a location.
- Some factors control SWS directly, while others indirectly (they are present but cannot be measured directly).
- Complex relationship needs to be understood in identifying direct and indirect controls of SWS.

2. Objective

• To examine the complex relationship between SWS and direct and indirect controls of SWS in a hummocky landscape.

3. Theory

- Structural equation modelling (SEM) is a confirmatory multivariate technique that helps to measure what we cannot see (latent) based on what we can see (observations).
- terrain indices represented latent Different topography, particle sizes represented latent soil texture, while organic carbon (OC) represented both during recharge and discharge period.
- Path coefficients are the partial correlation coefficients between dependent and independent variables.

- 25
- ≈40 ►

4. Materials and Methods

 Study Site: St. Denis National Wildlife Area (52°12'N, 106°50'W), Saskatchewan, Canada.

• Study Area: Hummocky landscape (Fig. 1), 10 to15% slope, loamy unsorted glacial till parent material, Borolls to Aquolls soil type, Grass cover.

Fig. 1: Transect position on hummocky landscape 128 sampling points with 4.5-m interval.

• SWS (up to 140 cm using a Neutron Probe and Time Domain Reflectometry), elevation, sand, silt, clay, OC were measured and different terrain indices were calculated using System for Automated Geo-scientific Analysis (SAGA) software (Fig. 2).

Fig. 2: Spatial distribution of SWS, elevation, wet. index & sand.

5. Results and Discussion

Table 1: Standardized path coefficients for different factors during recharge (wet) and discharge (dry) periods

	and the second	and the second second second		a stand and the second second	1 Canada Para
Factor	Re.	Dis.	Factor	Re.	Di
Wet. Index	0.97	0.97	Aspect	0.86	0.8
Catch. Area	0.33	0.34	Gradient	0.67	0.0
Solar rad.	0.96	0.96	Wind effect	0.61	0.
Curvature	Insig.	Insig.	Converg. Index	-0.36	-0.
slope	0.42	0.43	silt	0.94	0.

*Re.- recharge; Dis.- discharge, Insig.- insignificant

Fig. 3: Final structural equation model with standardized path coefficients for SWS and controlling factors of recharge and discharge period in italics.

5. Results and Discussion (Cont.)

- Large standardized path coefficients indicated topography to be a major control of SWS during recharge and discharge period (Fig. 3).
- Topography controls the runoff process during snowmelt or rainfall and redistributes water in the landscape.
- Depressions receive water from surrounding and store more water than knolls at all seasons (Fig.
- Insignificant path coefficient for soil texture indicated weak control during recharge or discharge period (Fig. 3).
- Relative elevation, wetness index, solar radiation, aspect best represented topography.
- Organic carbon represented latent topography better than that of latent soil texture.
- Terrain indices and particle sizes respectively control latent topography and texture directly, which control SWS indirectly.

6. Conclusions

 Topography was a major control of SWS irrespective of the seasons.

7. Acknowledgement

• U of S Deans' Scholarship, NSERC, Dr. Yates, Jason, Caden, Danny, Amanda, and Henry