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Summary

Objectives
• To clarify the characteristics of the fractional derivatives of soil 
temperature variation for the estimation of soil thermal properties 
including depth-dependence.

• To solve the inverse problems of estimating the surface 
temperature and the heat flux based on soil temperature data in 
the ground. 

Temperature and Heat Flux at the 
Ground Surface 

Application to Soil Temperature

Prediction of Surface TemperatureFractional Derivatives 
• Soil temperature and heat flux at the ground surface are 
essential to evaluate the exchanges of energy and water vapor 
between land surfaces and the atmosphere. Appropriate 
methods are required to estimate the surface temperature and 
the heat flux based on underground temperature data easily 
available. 

• We investigated the characteristics of the fractional derivatives 
of soil temperature variation. The semi-derivatives (half order 
derivatives) of homogeneous soils were almost linearly related to 
depth-directional gradients. The proportionality constant agreed 
well with the square root of the soil thermal diffusivity. Initial 
condition had limited effects only in a short “memory length”.  
Therefore, time-dependent diffusivity in situ was evaluated if 
temperature gradients at the same depth were measured 
synchronously.

• Usually, thermal diffusivity in a drying surface layer increases 
with depth. Fractional derivatives of lower than half order would 
be appropriate to evaluate the thermal properties of such a layer.

• For the estimation of ground surface temperature and heat flux 
at the surface, numerical deconvolution of discrete soil 
temperature data using Green’s function was confirmed to be 
efficient. 

• Using the semi-derivatives, prediction of ground surface 
temperature was feasible when some surface temperature values 
up to now and reliable weather data after that were available. 

Conclusions
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• Spatial gradients of temperature T(z, t) subjected to the diffusion 
equation with a constant diffusivity κ and an initially uniform 
condition are:
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The right-hand side of the equation is the special form of general 
fractional derivatives of order γ:
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Eq.1 means the depth-directional gradient is in proportion with the 
semi-derivatives (half order derivatives) of the temporal variation. 
• The backward difference given below is a useful approximation 
for a discrete time series with constant interval τ.
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• The fractional-order derivatives and deconvolution technique 
make it possible to find new, effective non-conventional solutions 
to important technological problems.

• Using eq.3, the ground surface temperature T0(t) is inferred 
based on a series of the surface temperature before: T0(t-τ), T0(t-
2τ), T0(t-3τ), ··· , and the heat flux into the soil q0(t). 

Soil Temp. Data
Ground Surface Temp.
Surface Heat Flux

Soil Thermal Properties
(Diffusivity, Conductivity)

Surface Heat Flux
(Weather Data)

Ground Surface Temp.

Semi Derivatives

• Prediction / Assimilation Problem

• Inverse Problems
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• According to Duhamel’s theorem, soil temperature T(z, t) is 
associated with the ground surface temperature T0(t) or the 
surface heat flux q0(t). If g(t) represents these functions,
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• Eq.4 indicates the deconvolution of a series T(z, jτ) with Ψ(z, 
(j+1/2)τ) gives a series of ∆g((j+1/2)τ). The series of g(jτ) is obtained 
by adding the ∆g successively.

Application to Harmonic Waves

• An example of the prediction of soil temperature variation is 
given in Fig. 6. The method should be superior to the classical 
“force-restore method” frequently used in GCM. 

• A stationary harmonic fluctuation whose period was 24h was 
considered. The thermal conductivity λ and the volumetric heat 
capacity C were assumed to have depth-dependence.

( ) ( )
( )( )
( )( )00

00

00

1
1

zzCC
zz

tTtzT

−β+=

−α+λ=λ

φ+ω= cos,

Fig. 1 Temperature Gradients at z=z0(Km-1, 
vertical) ~  Sub-derivatives (Kh-1/2, 
horizontal). α=β=0 and 10.
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Fig. 2 Temperature Gradients at z=z0(Km-1: 
vertical) ~  Fractional derivatives (Kh-γ, 
horizontal). α=β=10.
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Fig.4 Temperature gradients at z=0.5cm
(Kcm-1,vertical) ~  Sub-derivatives (Kh-1/2, 
horizontal). Aug. 3 ~ 5. The thermal 
diffusivity was obtained as k=8.87 10-3

cm2/s.

Fig.3 Soil temperature data analyzed (Mie 
University Farm). The horizontal axis 
represents elapsed hours from 6:00 am
Aug.3, 2003.
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Fig.6 Prediction of soil temperature 
variation at the depth z=2cm using 5 
initial values and heat flux data measured 
at the same depth by two heat flux meters. 
Aug. 3~7.
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Fig.5 Surface heat flux estimated by 
deconvolution of the soil temperature of the 
depth z=2cm (dots). The curve is a heat flux 
intensity (W/m2) measured at the same depth.
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