Barley Cultivar Ranking Under Contrasting Tillage Systems in the U.S. Great Plains Patrick M. Carr, Richard D. Horsley, Martin R. Hochhalter, Glenn B. Martin North Dakota State University

Abstract

western portions of the Great Plains.

- Barley production is shifting westward in the U.S. Great Plains • Two tillage treatments into areas where high-residue farming practices are replacing Clean-till and no-till conventional tillage methods. Our objective was to determine if • Six barley cultivars barley cultivar ranking changed across contrasting tillage • 2-rowed: Conlon, Conrad, Pinnacle systems. Six barley cultivars were grown under clean- and no-till management in southwestern North Dakota during 2009, 2010, • 6-rowed: Lacey, Stellar-ND, Tradition and 2011. Interactions between tillage systems and cultivars were **Experimental design** not detected for any yield component (P > 0.05). Likewise, yield RCB in a split-plot arrangement: tillage components were unaffected by tillage system. An interaction whole plots and cultivar subplots between environment and cultivar was detected for grain yield, Data collection but the two-rowed cultivar Pinnacle produced equal or greater amounts of grain than the five other cultivars each year, plant density, spike density, grain yield, averaging 6530 kg ha⁻¹ in 2009, 3400 kg ha⁻¹ in 2010, and 3232 and kernel weight in each 3- by 12-m kg ha⁻¹ in 2011. Results of this study indicate that barley cultivar subplot recommendations based on cultivar adaptation in low-residue environments can be extended to high-residue environments in Results •A tillage x cultivar interaction detected for plant density (P < 0.05) Introduction □Conlon ☑ Conrad Barley production is shifting westward ■Lacey Plant numbers equal or greater for □Pinnacle because of disease problems in eastern parts ■Stellar ND Tradition across both tillage systems. Tradition of North Dakota
- No-till is replacing reduced- and clean-till
- In previous research, tillage x cultivar interactions existed in some environments (e.g., Thierrien and Grant, 1998), but not others (e.g., Ciha, 1982); our objective: to determine if a tillage x cultivar interaction exists in the U.S. Great Plains

Materials and Methods

- No cultivar x tillage interaction detected for spike density (P = 0.35), grain yield (P= 0.89), or kernel weight (P = 0.17)
- •An environment x cultivar interaction < detected for grain yield
- •Pinnacle produced equal or greater amounts of grain than other cultivars within each environment

Results (continued)

 Kernels heavier for Pinnacle than other cultivars, except Conlon

•Plant density (P = 0.91), spike density (P = 0.06), grain yield (P =0.37), and kernel weight (P = 0.81) unaffected by tillage

Conclusion

 Barley cultivar recommendations unaffected by tillage system

Acknowledgments

Timothy Winch and Sydney Martin are thanked for assistance in conducting field work. Partial funding for this study was provided by the Institute of Barley and Malt Sciences.

References

Ciha, A.J. 1982. Yield and yield components of four spring barley cultivars under three tillage systems. Agron. J. 74:597-600. Therrien, M.C., and C.A. Grant. 1998. Effect of tillage management on yield performance in barley. Can. J. Plant Sci.78:301-303.