

Introduction

Crop rotation has been used throughout the world for hundreds of years with modern rotations (green manures) begun as early as 1730 in England. The benefits of crop rotation can be divided into three major areas and include: a) maintenance of crop yields; b) control of diseases, insects, and weeds; and c) prevention of soil erosion. Before the introduction and use of chemical fertilizers, maintenance and/or improvement of yields were best achieved by improving the base fertility of the soil. This usually required growing a legume crop to promote nitrogen fixation or applying manure to provide additional organic nutrients. Corn/cotton rotations were used through the first half of the 20th century as animal power on the farm was extremely important. Corn was needed as feedstock for the animals. Farm mechanization and inorganic fertilizer materials reduced the need for some crops, rotations decreased, and mono-crop agriculture gained in popularity and profitability. With today's farm policies and programs, and the freedom to choose different crop mixes, rotations are coming back into prominence. Field research across the cotton producing states supported crop rotation. However, growers were reluctant to rotate cotton because of government payments and crop rotations complicated production practices and presented extra challenges for producers.

CROP ROTATION IN THE MID-SOUTH Effect of Cropping Systems on Nutrient Uptake and Removal

M. Wayne Ebelhar

Research Professor and Agronomist and

> **Davis R. Clark Research Associate III**

Mississippi State University Delta Research and Extension Center Stoneville, Mississippi

Results and Discussion

The first eight years of the

Centennial Rotation study was completed in 2011 (100-yr rotation). Longterm crop rotations and long-term research are limited in their scope in many areas or are no longer in existence. The Morrow plots (University of Illinois) and The Old Rotation (Auburn University) are some of the oldest continuous plots in the USA. To celebrate the 100-yr anniversary of the Delta Branch Experiment Station and a new era in agricultural technology, the Centennial Rotation was initiated in 2004 at the Delta Research and Extension Center at Stoneville, MS. The project was originally established as a cotton-based system due the historic significance of cotton to this region of the USA. Only one system (treatments 7 and 8) does not contain cotton and is intended to document the long standing advantages of corn/soybean rotations. With recent shifts to grain production in the Midsouth, this system has become quite important. The systems will begin to repeat in the thirteenth season at which time some rotations will have completed six cycles, others four cycles, and the last system will have completed three cycles.

The summary of the first eight years of crop yields are shown in Table 2. Lint yields in the continuous cotton area (treatment 1) have the overall lowest yields compared to the other systems. The greatest lint yields as expected, follow corn in rotation. Yearto-year variations have been evident and influenced by insect pressure and/or adverse weather conditions. Over the years the range has been 13.1 to 41.8% higher yields (128.8 to 433.8 kg lint/ha) where cotton was in some rotation with corn compared to continuous cotton. Average cotton yields have varied across years ranging from 998.0 kg lint/ha in 2007 to a high of 1637.2 lkg/ha. Corn yields in the same time frame have ranged from 12.06 to 13.30 Mg/ha excluding 2011. The 2011 yields (5.72 Mg/ha) were way below average due to a lack of irrigation in a timely fashion. Soybean yields have ranged from 3.38 to 5.28 Mg/ha with the lowest yields in 2011 (Table 2). Weather problems such as hurricanes have caused some problems (lodging) but the yields have still been harvestable. Timely irrigation is a key to successful and consistent corn and soybean production. Timing of the first irrigation is critical.

Early research in the Yazoo-Mississippi River Delta included simple rotations and the use of manure on fields that had been used for cotton production. Mechanization shifted the agricultural industry from hand labor to machines and chemicals while today that shift continues with the introduction and acceptance of biotechnology. The shift from rotation to mono-cultural and gradually back to rotation brings us to the 21st century. Cotton, corn, soybean, grain sorghum, and rice production recorded record yields in recent years with the aid of new technology and advancements through research. Since the turn of the century, cotton, corn, and soybean have had record yields along with record prices. Corn acreage has increased while cotton has decreased in response to profitability. Grain crops can be planted early and harvested earlier. With irrigation, yield stability has led to shifts in the crop mix with some producers shifting from away from cotton totally.

The overall objective of this research project (Centennial Rotation) was to establish long-term rotations involving cotton, corn, and soybean with the crops to be grown with the most up-to-date technology available. The study was designed to examine the impact of rotations on the wholefarm enterprise while monitoring soil nutrients, nematodes, and other pests. Several cooperators were identified to assist in the overall management of the project in order to assure maximum utilization of the data collected.

Research Objectives:

1.Determine the effects of long-term crop rotation with respect to yield and profitability while utilizing state-of-the-art technology. 2.Assess the impact of crop rotation on the whole-farm enterprise. 3. Monitor changes in soil nutrient status, nematode numbers and types, and weed species.

4.Demonstrate the long-term need for crop rotation for the next century.

Materials and Methods

The research study includes five crop rotation sequences along with continuous cotton as the base systems. All crops in a rotation sequence are grown each season thus establishing 15 distinct 'treatments' that are replicated four times. The five crop rotation sequences include 1) corncotton, 2) corn-cotton-cotton, 3) corn-soybean, 4) soybean-corn-cotton, and 5) soybean-corn-cotton-cotton and are summarize in Table 1. Each plot contains eight 102-cm rows. Row length is 61.0 m (includes two 30.5 m subplots) with a minimum of four rows harvested for yield determinations. Fertility requirements are determined from soil tests each year. All cultural practices are maintained as uniformly as possible taking into consideration the technology that is available. Plots are harvested with commercial equipment adapted for plot harvests. Each plot is sampled for nutrient status and soil acidity (liming). The nutrient management and pesticide regimen is selected based on the committee expertise and recommendations. Production inputs and returns are then analyzed to determine the overall effects of rotation on whole-farm economics. With the current systems, it will take 12 years for all rotation systems to cycle back to the same point and the sequences will repeat. The actual arrangement of the research field is shown in Figure 1 (2011 Growing Season).

Table 1: Cropping sequence for long-term cotton-based rotation cropping system. All crops in each sequence to be grown each year. **MAFES-DREC Stoneville, MS**

CENTENNIA	L ROTA	TION ST	UDY									
	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
System	1	2	3	4	5	6	7	8	9	10	11	12
1	CT	CT	CT	CT	CT	CT	CT	CT	CT	CT	СТ	СТ
2	CT	CR	CT	CR	CT	CR	CT	CR	CT	CR	CT	CR
3	CR	CT	CR	CT	CR	CT	CR	СТ	CR	CT	CR	СТ
4	CR	CT	CT	CR	CT	CT	CR	CT	CT	CR	CT	CT
5	CT	CR	СТ	СТ	CR	СТ	СТ	CR	СТ	СТ	CR	СТ
6	CT	СТ	CR	СТ	CT	CR	СТ	СТ	CR	СТ	СТ	CR
7	CR	SB	CR	SB	CR	SB	CR	SB	CR	SB	CR	SB
8	SB	CR	SB	CR	SB	CR	SB	CR	SB	CR	SB	CR
9	SB	CR	СТ	SB	CR	CT	SB	CR	СТ	SB	CR	СТ
10	СТ	SB	CR	СТ	SB	CR	CT	SB	CR	CT	SB	CR
11	CR	CT	SB	CR	CT	SB	CR	CT	SB	CR	СТ	SB
12	SB	CR	CT	CT	SB	CR	CT	CT	SB	CR	CT	CT
13	CT	SB	CR	CT	CT	SB	CR	CT	CT	SB	CR	CT
14	СТ	CT	SB	CR	СТ	CT	SB	CR	CT	CT	SB	CR
15	CR	CT	CT	SB	CR	CT	CT	SB	CR	CT	СТ	SB
CT = Cotton		CR = Cc	orn	SB = Sc	oybean							

Figure 2: Estimated nutrient uptake and removal for specific crops based on selected yields.

SSISSIP

Figure 1: Centennial Rotation Layout, Delta Research and Extension Center, Stoneville, MS. Layout is specific for 2011 Cropping Season.

100-Year Centennial Rotation N 2011 Delta Research and Extension Center Experiment No.: CRT-CT (Year 8) **1** 2 6 9 **3** 14 10 **13** 15 **12** 4 7 8 **3** 5 **11** 7 15 9 **13** 6 14 10 **1** 12 2 4 Borders: Soybean **1** 2 **11** 9 7 **13** 4 8 14 6 15 5 12 10 3 15 1 4 10 13 5 8 12 3 6 11 2 **DREC Field 5D**

Nutrient uptake and removal are

areas of interest in the long-term rotation study. Nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) uptake and removal are being calculated for each of the systems. Figure 2 shows the estimated N, P, K, and S uptake (A) and removal (B) for selected crops in the Mississippi Delta at selected yield levels. For cotton, corn, and soybean, the crops take up more nutrients than are actually removed from the field. Only the grain portion of corn and soybean are removed and the seed and lint portion of cotton along with some vegetative materials. Soybean removes the largest percentage of N and K while corn removes the largest percentage of P. These values (Figure 2) have been used to calculate nutrient uptake and removal for the crop sequences that have been grown to date. The summary of nutrient uptake is shown in Table 3 and the summary of nutrient removal is shown in Table 4. As expected, the more cotton grown, the lower the N uptake and removal. The same is true for P and K also. The greatest N uptake and removal has occurred in the corn/soybean rotation system (Treatments 7 and 8). Much of the N that is removed in this system comes from symbiotic N fixation associated with soybean production and from high rates of fertilizer N addition for corn production. Producers should take extra steps to insure adequate fertility when shifting from cotton production to rotations with grain crops. Nutrient removal, especially N, can be 3 to 4 times higher than continuous cotton.

Nutrient Uptake for Selected Crops A. **Yield** Crop Ρ Κ (kg/ha) kg/ha · 10000 238 45 197 30 Corn 349 4000 29 189 22 Soybean 155 5000 25 141 22 Wheat ------_____ _____ 1200 192 139 25 Cotton 128 8000 30 159 Rice 14 To Convert P to P₂0₅ multiply by 2.29 To Convert K to K₂0 multiply by 1.20

B Nutrient Removal for Selected Crops **Yield** Ν Crop (kg/ha) 161 35 10000 43 14 Corn 267 23 79 4000 Soybean 96 24 5000 20 Wheat _____ ______ 1200 Cotton 77 40 8000 26 80 22 Rice To Convert P to P₂0₅ multiply by 2.29 To Convert K to K₂0 multiply by 1.20

The economic impact of crop rotations is evident in most years just from the yield standpoint. However, as the cost of inputs continue to rise, particularly with respect to technology fees, the more important rotation becomes. The increase in herbicide-resistant weed species across the country could lead to even more emphasis on crop rotation and herbicide rotation.

	IENT U		_							D	17	•
				rop Sec	quence				N Uptake	P Uptake	K Uptake	S Uptake
Trt	2004	2005	2006	2007	2008	2009	2010	2011	(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)
1	СТ	СТ	СТ	СТ	СТ	СТ	СТ	СТ	1418.8	186.2	1028.7	212.8
2	СТ	CR	СТ	CR	СТ	CR	СТ	CR	1876.7	300.9	1461.6	257.3
3	CR	СТ	CR	СТ	CR	СТ	CR	СТ	1912.0	316.1	1506.8	257.8
4	CR	СТ	СТ	CR	СТ	СТ	CR	СТ	1919.5	303.9	1487.9	264.9
5	СТ	CR	СТ	СТ	CR	СТ	СТ	CR	1761.0	272.6	1353.6	245.7
6	СТ	СТ	CR	СТ	СТ	CR	СТ	СТ	1766.6	264.3	1340.8	250.6

	ummary of total nutrient (N, P, K, S) uptake from the Centennial Rotation Study 2004 – 2011). Delta Research and Extension Center, Stoneville, Mississippi Delta Research and Extension Center, Stoneville, Mississippi															Table									al from the Center, S																	
																		TATIO								(000	4 0044			NUT			AL						N	Р	ĸ	
	UPTAK	<u>E</u>						N	F	P	K	S S		CEI	NIE	NNIA	L RO	ΙΑΠΟ	DN SI	UDY -	- SUM		OF C	KOP Y	IELDS	5 (200	4-2011	1) - K	G/HA				C	rop Sequ	ience				Removal	Removal	Removal	l Rem
		C	rop Seq	uence				Uptake	Upta	take	Uptake	Uptake	Reteti	ion			Crop V					2004	2005	2006	2007	2000	2000	2010	0 2011		2004	2005	2006	2007	2008	2009	2010	2011	(kg/ha)	(kg/ha)	(kg/ha)	(kg/
<u>rt 2004</u>	2005	2006	2007	2008	2009	2010	2011	<u>(kg/ha)</u>	<u>(kg/</u>	<u>/ha)</u>	(kg/ha)	<u>(kg/ha)</u>	Syste	2004	4 2005	2006	CTOP TO 2007 20	08 2009	2010 2	011 2010) 2011	2004 Crop	Crop	Cron	Cron	Crop	Crop	Cro	n Gron													
												8	Cysic	1 <u>1</u>	2000	3	4 5	5 6	7	8 7	8	Yield	Yield	Yield	Yield	Yield	Yield	Yiel	d Yield	1	СТ	СТ	СТ	СТ	СТ	СТ	СТ	СТ	567.6	106.4	292.6	6
СТ	СТ	СТ	СТ	СТ	СТ	СТ	СТ	1418	.8	186.2	1028.7	212.8																														
													1	СТ	г ст	СТ	CT C	ст ст	СТ	ст ст	СТ	1602	1234	1096	805	1039	983	3 1	164 944	2	СТ	CR	СТ	CR	СТ	CR	СТ	CR	1017.3	209.5	360.8	.8
2 CT	CR	СТ	CR	СТ	CR	СТ	CR	1876	.7	300.9	1461.6	257.3																		3	CR	СТ	CR	СТ	CR	СТ	CR	СТ	1083.4	225.5	362.9	
B CR	СТ	CR	СТ	CR	СТ	CR	СТ	1912	.0	316.1	1506.8	257.8	2	CT	CR	CT	CR C	T CR	CT	CR CT	CR	1647	12835	1328	12596	1365	11442	2 1	328 3866													
													3	CR	K CI	CR	CI C	R CI	CR	CI CR	CI	12621	1494	11611	1055	12226	1077	12	214 1081	4	CR	СТ	СТ	CR	СТ	СТ	CR	СТ	1021.9	209.4	370.9	.9
CR	СТ	СТ	CR	СТ	СТ	CR	СТ	1919	.5	303.9	1487.9	264.9	4	CR	R CT	СТ	CR C	ст ст	CR	CT CR	СТ	12370	1454	988	13763	1473	1092	2 12	659 1100	5	СТ	CR	СТ	СТ	CR	СТ	СТ	CR	907.3	184.3	343.2	
5 CT	CR	СТ	СТ	CR	СТ	СТ	CR	1761	.0	272.6	1353.6	245.7	5	CT	CR	СТ	CT C	R CT	CT	CR CT	CR	1691	13380	1346	971	12972	1103	- 12 3 12	286 4631	6	СТ	СТ	CR	СТ	СТ	CR	СТ	СТ	865.1	173.3		
6 CT	СТ	CR	СТ	СТ	CR	СТ	СТ	1766	.6	264.3	1340.8	250.6	6	СТ	г ст	CR	CT C	T CR	СТ	ст ст	СТ	1708	1287	11988	1018	1100	12220) 1	383 943						•							
												8																		7	CR	SB	CR	SB	CR	SB	CR	SB	1986.9	278.3	563.1	.1
CR	SB	CR	SB	CR	SB	CR	SB	2740	.1	352.9	1830.0	248.3	7	CR	R SB	CR	SB C	R SB	CR	SB CR	SB	12163	3884	12502	5268	12910	4926	5 12	998 3535	8	SB	CR	SB	CR	SB	CR	SB	CR	1829.6	253.3	519.0	
B SB	CR	SB	CR	SB	CR	SB	CR	2520	.9	322.6	1677.6	227.2	8	SB	B CR	SB	CR S	B CR	SB	CR SB	CR	4052	13317	4200	13098	3770	12866	6 4	415 6387						•=		•				0.01	
													9	SB		СТ	SB C	P CT	SB		CR	4126	13336	1351	5074	12305	111/	ا ر ا	7// 7133	9	SB	CR	СТ	SB	CR	СТ	SB	CR	1615.4	225.0	496.5	.5
) SB	CR	СТ	SB	CR	СТ	SB	CR	2393	.0	299.2	1593.1	234.4	10	CT	Г SB	CR	CT S	B CR	CT	SB CT	SB	1621	4133	12207	1142	4059	13136	5 1	343 3219	10	CT	SB	CR	CT	SB	CR	CT	SB	1430.6	203.8	468.6	.6
0 CT	SB	CR	СТ	SB	CR	СТ	SB	2255	.5	281.7	1515.3	237.3	11	CR	R CT	SB	CR C	T SB	CR	CT CR	СТ	12289	1420	4328	13023	1369	4455	5 13	110 1079	11	CR	СТ	SB	CR	СТ	SB	CR	СТ	1241.0	221.5		
1 CR	СТ	SB	CR	СТ	SB	CR	СТ	2299	.6	316.2	1621.8	256.0																														
												8	12	SB	B CR	СТ	CT S	B CR	СТ	CT CT	СТ	4059	12483	1291	954	3864	12289) 1	388 951	12	SB	CR	СТ	СТ	SB	CR	СТ	СТ	1219.7	187.2	413.2	.2
2 SB	CR	СТ	СТ	SB	CR	СТ	СТ	2014	.2	264.1	1394.9	227.8	13	CT	F SB	CR	CT C	T SB	CR	CT CR	CT	1571	3515	11994	1041	1096	4691	13	048 1186	13	СТ	SB	CR	СТ	СТ	SB	CR	СТ	1262.7	193.5		
3 CT	SB	CR	СТ	СТ	SB	CR	СТ	2094	.8	273.8	1449.5	237.6	14			C.T.	SB C		C.T.	CK SB	SR	1020 12577	1280 1522	3904 1061	14014 5477	1389	1041	2 4 > 1	489 6588 149 3387	14	СТ	СТ	SB	CR	СТ	СТ	SB	CR	1232.2	184.5		
4 CT	СТ	SB	CR	СТ	СТ	SB	CR	2076	.3	264.6	1422.0	236.0	10									12017	1022	1001	511	12040	1112			15	CR	СТ	СТ	SB	CR	СТ	СТ	SB	1304.5	197.0		
5 CR	СТ	СТ	SB	CR	СТ	СТ	SB	2145	.0	277.9	1476.3	240.3	NOTE	: Cottor	n Yield r	reported i	in ka lint/	ha, Corn `	Yield rep	orted in ka	g/ha @15.	5%, Sovb	ean Yield r	eported in	kg/ha @ 13	3%																

																							N / N / /							44)				NUT	RIENT	REMO	VAL						N	Р	K	
IUTRIE	NT UF	PTAKE							N	Р		К	S	8	CE	NIE	NNIA		ΠΑΙ	ION 3	SIUL	JY - 5		ARY	OF CF	KOP Y	IELD	5 (200)4-20 °	11) - I	KG/I	HA					(Crop Sec	quence				Removal	Removal	Removal	Rei
				Crop S	equenc	e			Uptake	Uptak	e U	ptake	Uptake	Deteti	ion			Cron	Voor				20	0.4	2005	2006	2007	2009	2000	20/	14.0	2014		Trt	200	4 200	5 2006	5 200 7	2008	2009	2010	2011	(kg/ha)	(kg/ha)	(kg/ha)	(k
Trt 2	2004	2005	2006	200	200	8 200	9 201	0 2011	(kg/ha)	(kg/ha	<u>) (k</u>	(g/ha)	<u>(kg/ha)</u>	Rotati	000	1 2005	2006	Crop		00 2010	2011	2010 20	20	04	Crop	Crop	2007 Cron	2008 Crop	2009 Crop		rop	Crop														
														Syste	1	4 2003 2	2000 /	2007 Z	5 6	3 2010 7	2011 8	7		old	Viold	Vield	Vield	Vield	Vield		ield	Crop		1	СТ	СТ	СТ	СТ	СТ	СТ	СТ	СТ	567.6	106.4	292.6	6
1 (СТ	СТ	СТ	СТ	СТ	СТ	СТ	СТ	1418.8	3 18	36.2	1028.7	212.8			_			<u> </u>	<u> </u>															01	01	01	01	01	U1	U1		007.0	100.1	202.0	.0
			•											1	СТ	г ст	СТ	СТ	ст с	т ст	СТ	CT (ст	1602	1234	1096	805	1039	9 9	983	1164	944	1.00	2	ст	CD	СТ		ОТ	CD	ОТ	CD	1017.2	200 5	260.0	0
) (די	CR	СТ	CR	СТ	CP	СТ	CR	1876.7	7 3(0.9	1461.6	257.3		0.		01	0.	0. 0		01			1002	1201	1000	000	1000	, 0		1101	011		2								CR	1017.3	209.5	360.8	
	וכ	CT CT		СТ				СТ						2	СТ	r CR	СТ	CR	ст с	R CT	CR	CT C	CR	1647	12835	1328	12596	1365	5 114	42	1328	3866		3	CR	CI	CR	CT	CR	CT	CR	CT	1083.4	225.5	362.9	.9
Ĺ	νĸ	CT	UK	CI	UK	CI	UK	CT	1912.() 3	16.1	1506.8	257.8	3	CF	к ст	CR	СТ	CR C	T CR	СТ	CR (CT 1	2621	1494	11611	1055	12226	6 10)77 1	12214	1081		8												
																																		4	CR	СТ	СТ	CR	СТ	СТ	CR	СТ	1021.9	209.4	370.9	.9
. (CR	СТ	СТ	CR	СТ	СТ	CR	СТ	1919.5		03.9	1487.9	264.9	4	CF	к ст	СТ	CR	ст с	T CR	СТ	CR (CT 1	2370	1454	988	13763	1473	3 10	92 1	12659	1100		5	СТ	CR	СТ	СТ	CR	СТ	СТ	CR	907.3	184.3	343.2	.2
(CT	CR	СТ	СТ	CR	СТ	СТ	CR	1761.0) 27	72.6	1353.6	245.7	5	СТ	r cr	СТ	СТ	CR C	т ст	CR	CT C	R	1691	13380	1346	971	12972	2 11	03	1286	4631		6	СТ	СТ	CR	СТ	СТ	CR	СТ	СТ	865.1	173.3	348.7	.7
6 (CT	СТ	CR	СТ	CT	CR	СТ	СТ	1766.6	6 26	64.3	1340.8	250.6	6	СТ	г ст	CR	СТ	CT C	R CT	СТ	CT (СТ	1708	1287	11988	1018	1100) 122	220	1383	943														
														8																				7	CR	SB	CR	SB	CR	SB	CR	SB	1986.9	278.3	563.1	.1
7 (R	SB	CR	SB	CR	SB	CR	SB	2740.2	35	52.9	1830.0	248.3	7	CF	R SB	CR	SB	CR S	B CR	SB	CR S	SB 1	2163	3884	12502	5268	12910) 49	926 1	12998	3535		8	SB	CR	SB	CR	SB	CR	SB	CR	1829.6	253.3		
S	SB	CR	SB	CR	SB	CR	SB	CR	2520.9		22.6	1677.6	227.2	8	SE	B CR	SB	CR	SB C	R SB	CR	SB C	R	4052	13317	4200	13098	3770) 128	866	4415	6387		Ŭ	00	ÖN	00	ÖN	02	ÖN	00	ÖN	102010	200.0	01010	.0
															0.5		OT	05	00 0	T 0D	0.5	00		4400	40000	1051	5074	4000			4744	7400		0	CD	CP	СТ	CD	CP	СТ	CD	CP	1615.4	225.0	496.5	Б
	B	CR	СТ	SB	CR	СТ	SB	CR	2393.0) 20	99.2	1593.1	234.4	9	SE			SB			CR	SB (R R	4126	13336	1351	5074	12395	b 11	14	4744	7133		9												
	של ד	SB		СТ	SB		CT	SB	2255.5		81.7	1515.3	237.3	10			CR				SB CT		סם ד 1	1021	4133	12207	1142	405		30	1343	3219		10		3B 0T			<u>9</u> 0			SB	1430.6	203.8		
	וכ							СТ	2299.6			1621.8			Ur		30	UN	01 3	D CK	CT			2209	1420	4520	13023	1308	9 44	55 1	13110	1079		11	CR	CI	SB	CR	CT	SB	CR	CT	1241.0	221.5	464.8	.8
		C1	30	UK	CI	30	UK	U1	2299.0) 3	16.2	1021.0	256.0	12	SF	CR	СТ	СТ	SB C	R CT	СТ	CT ().T	4059	12483	1291	954	3864	122	289	1388	951														
			~-	~-			~-	~-						13	C	Г SB	CR	CT	CT S	B CR	СТ	CR (CT	1571	3515	11994	1041	1096	6 46	591 1	13048	1186		12	SB	CR	СТ	СТ	SB	CR	СТ	СТ	1219.7	187.2		
2 8	5B	CR	CT	CT	SB	CR	CT	СТ	2014.2		64.1	1394.9	227.8	14	CT	г СТ	SB	CR	CT C	T SB	CR	SB C	CR	1620	1286	3904	14014	1389) 10		4489	6588		13	СТ	SB	CR	СТ	СТ	SB	CR	СТ	1262.7	193.5	430.2	.2
3 (CT	SB	CR	СТ	СТ	SB	CR	СТ	2094.8		73.8	1449.5	237.6	15	CF	R CT	СТ	SB	CR C	т ст	SB	CT S	SB 1	2577	1522	1061	5477	12540) 11		1149	3387		14	СТ	СТ	SB	CR	СТ	СТ	SB	CR	1232.2	184.5	429.5	.5
4 (CT	СТ	SB	CR	СТ	СТ	SB	CR	2076.3	3 26	64.6	1422.0	236.0																					15	CR	СТ	СТ	SB	CR	СТ	СТ	SB	1304.5	197.0	441.8	.8
5 (R	СТ	СТ	SB	CR	СТ	СТ	SB	2145.0) 27	77.9	1476.3	240.3	NOTE	: Cotto	n Yield r	eported	in kg lin	t/ha, Co	rn Yield	reported	in kg/ha	@15.5%,	Soybea	an Yield re	ported in	kg/ha @ 1	3%																		