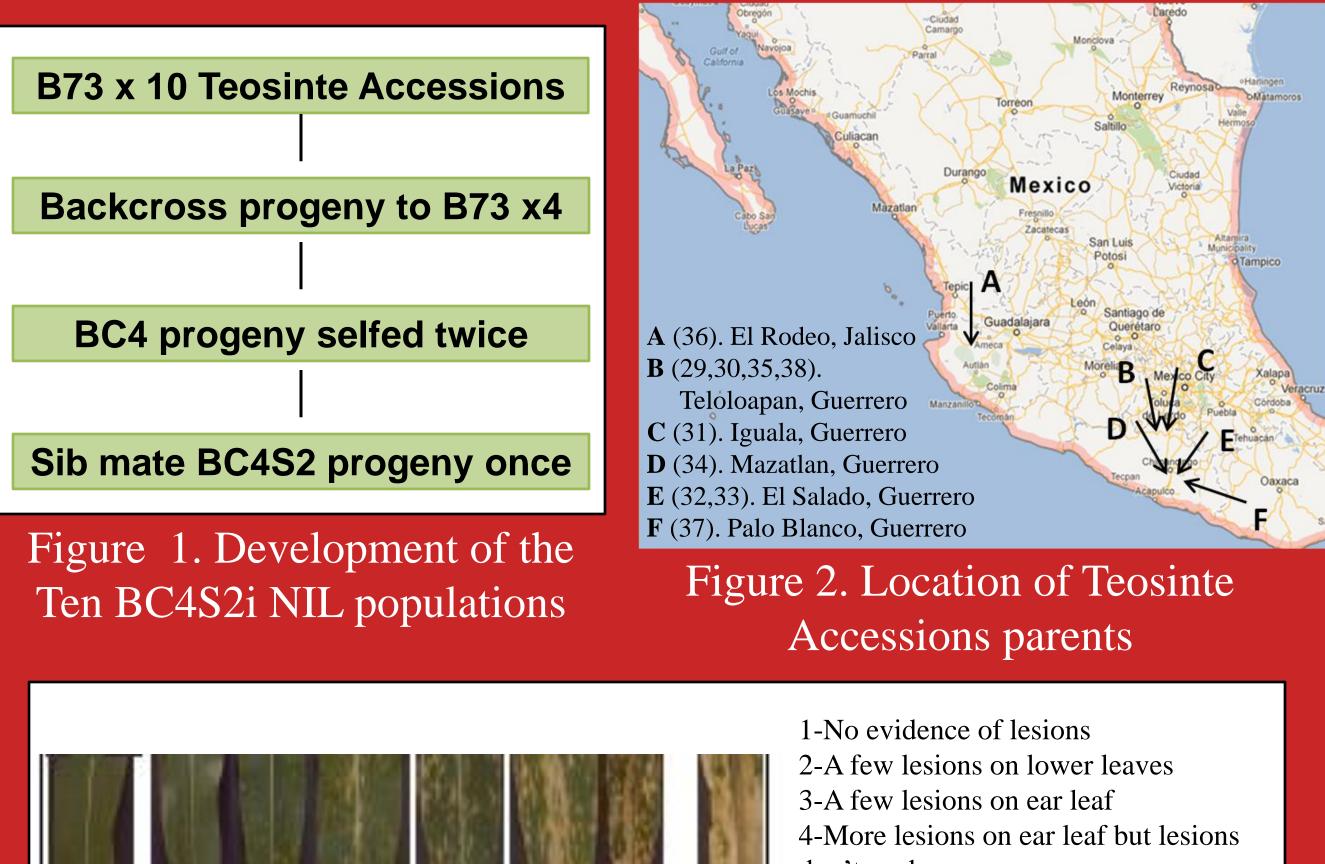
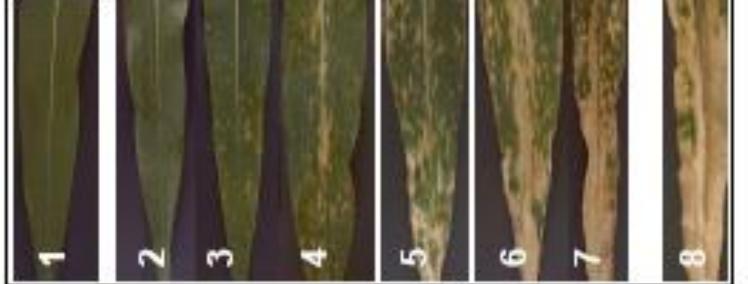
Evaluating Teosinte Introgressions for Resistance to Gray Leaf Spot and Southern Leaf Blight J. R. Recker¹, M. Krakowsky², S. Flint-Garcia³ and P. J. Balint-Kurti² ¹North Carolina State University, ²USDA-ARS, Raleigh, NC, ³USDA-ARS, Columbia, MO

Introduction

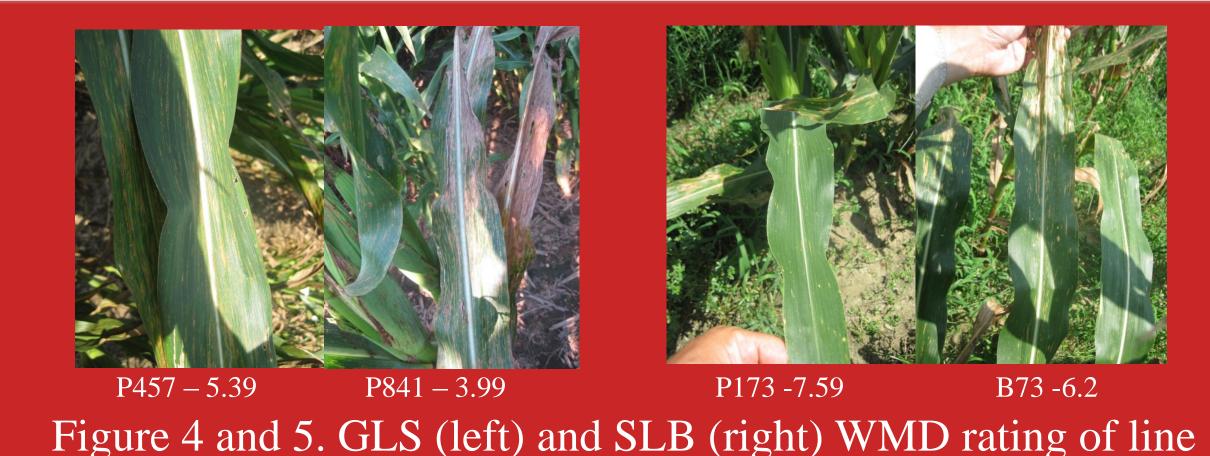

• Two important foliar maize diseases in the US:


 $\overline{\mathbf{OS}}$

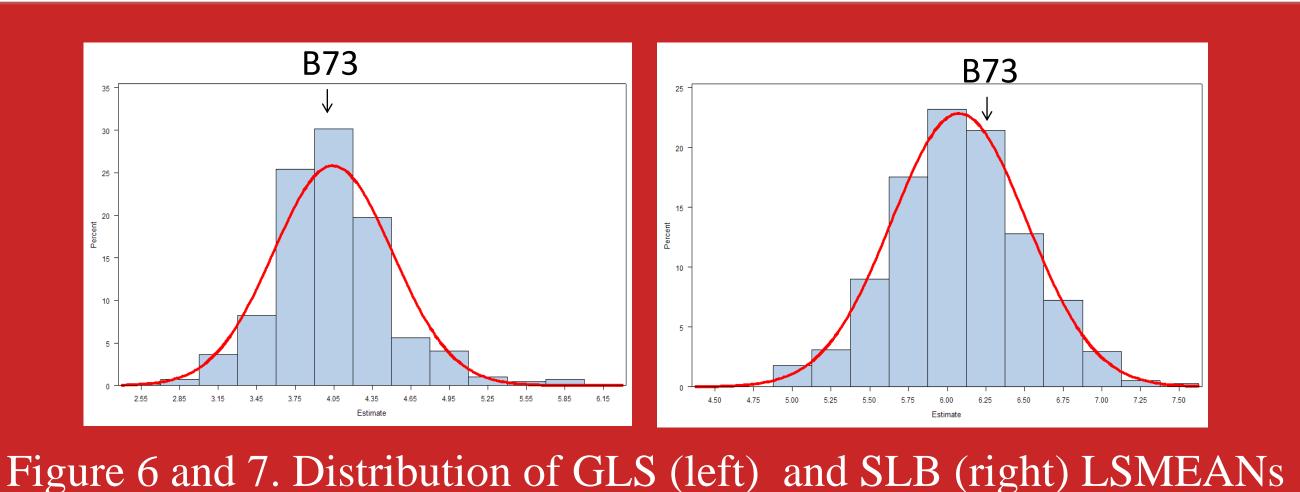
- -Gray Leaf Spot [(GLS), causal agent Cercospora zeaemaydis]
- -Southern Leaf Blight [(SLB), casual agent Cochliobolus *heterostrophus*]
- -Control methods include: using resistant cultivars, crop rotation, and conventional tillage
- Geneticists and breeders are mining germplasm for novel resistance alleles to these two diseases
 - -Many studies have been published identifying chromosome regions of interest
 - -Gene pool within temperate maize is relatively narrow due to genetic bottlenecks during domestication and modern breeding
- Teosinte is the wild progenitor of maize, using it as the donor parent we can bring back some of the original diversity
- Teosinte easily forms hybrids with current maize inbreds (as pictured below) allowing the exploration of its' potential utilization

- Screening teosinte introgressions in near-isogenic lines (NILs) allows us to explore small chromosomal segments in isolation
- The objectives of this research are to identify alleles from teosinte conferring resistance to each disease through:
 - -Field screening
 - -Identifying regions of interest using the genotypic data
 - -Validating potential resistant QTL

don't coalesce


5-Lesions on ear leaf have grown together, giving large necrotic areas 6-Lesions on the leaf above the ear leaf have grown together 3-Almost all tissue on plant is dead 9-Everything brown

Materials and Methods


•775 teosinte (Zea mays ssp. parviglumis) NILs were developed by the USDA-ARS; Columbia, MO (Figure 1) by crossing 10 different teosinte accessions, collected from six areas in Mexico (Figure 2), to the maize inbred B73 (susceptible)

- Data on days to anthesis (DTA) and two-three disease scores per season (Figure 3) were collected over 2 years
- A Weighted mean disease (WMD) score was calculated (Figure 4 & 5)
- LSMEANs were obtained for WMD and DTA and all possible pairwise comparisons between the LSMEANs for WMD
- Entry Mean Heritability for each disease was calculated with the random effects of years, reps, and genotype
- Genotypic data provided by USDA-ARS; Columbia, MO -GoldenGate (Illumina) assay of 768 single nucleotide polymorphism (SNP) markers, 728 were informative
- A joint population stepwise regression analysis was used to determine the significant markers for each disease and DTA, using their respective LSMEANs

Results

- The LSMEANs for GLS ranged from 2.5-6.1 (B73 = 4; Fig 6) • 161/692 NILs for GLS were significantly different from B73
- The LSMEANs for SLB ranged 4.5-7.6 (B73 = 6.2; Fig 7)
- 144/774 NILs for SLB were significantly different from B73
- Entry Mean Heritability was 0.79 for GLS and 0.66 for SLB

- Four significant regions were identified for SLB and six for GLS
 - The effect of one allele substitution was estimated
 - Popns selected with a significant effect (Tables 1 & 2)
 - Lines within each of those popping were selected to further validate each region
- Six regions of interest were identified for DTA – One overlapped with SLB on Chrom 8 but not with GLS

Table 1. Effect of one allele substitution for SLB by region and popn. (with a line that was significantly different to B73)										
Region/Popn	Z029	Z030	Z031	Z032	Z033	Z034	Z035	Z036	Z037	Z038
Chr2/cM67.9		0.31		0.3		0.28		0.37		
Chr3/cM50.2					0.29		0.38	0.52	0.35	
Chr3/cM70.6				-0.42	-0.37		-0.6	-0.3		
Chr8/cM66.9				0.48	0.42			0.44		
				0.40	0.42			0.44		

Table 2. Effect of one allele substitution for GLS by region and popn.(with a line that was significantly different to B73)									
Region/Popn	Z029	Z030	Z031	Z032	Z033	Z034	Z035	Z036	Z037
Chr2/cM67.9		0.33		0.24		0.43		0.79	
Chr3/cM90.1									1.04
Chr4/cM81.7		0.5			0.92	0.53	0.61	0.45	
Chr5/cM47					-1.12				-0.36
Chr8/cM76.1				0.51	-0.61				
Chr9/cM44.5	0.39				0.57	0.68	1.06	0.45	0.85

Ongoing Research

- 2% of the NILs were selected to further validate the regions of interest associated with SLB resistance
- •4% of the NILS were selected to further validate the regions of interest associated with GLS resistance
- $F_{2:3}$ families are being developed by: – Crossing the selected NILs to B73
- Field evaluations of each $F_{2:3}$ family occurred/will occur in: – 2011 (SLB-3 families, GLS-3 families) - 2012 (SLB and GLS-5 families)
- 2013 (SLB-5 families, GLS-10 families)
- Leaf samples from each row pooled for DNA extraction
- Genotyping each $F_{2,3}$ family with KASPar SNP markers
- Single Marker analysis to validate association (Table 3)

Table 3. Validation of marker association with disease reduction in $F_{2:3}$ families									
Trait	Family	Region	Parent score and class	F _{2:3} Class Means	Significant Effect Estimate	Single Marker			
SLB	Z035	C3/50.2cM	B73-5.61 (2) NIL-6.91 (0)	0-6.28 1-5.85 2-5.66	Add: 0.31 Dom: -0.12	R ² : 0.48			
SLB	Z030	C2/62.2cM	B73-5.61 (0) NIL-6.67 (2)	0-5.74 1-5.98 2-6.09	Add: 0.18	R ² : 0.26			
GLS	Z033	C4/90.7cM	B73-4.57 (2) NIL-5.84 (0)	0-5.28 1-5.08 2-4.93	Add:0.18	R ² : 0.06			
GLS	Z036	C4/89.1cM	B73- 4.57 (2) NIL-6.64 (0)	0-6.09 1-5.83 2-5.58	Add: 0.25	R ² : 0.17			
GLS	Z036	C9/42.8cM	B73-4.57 (2) NIL-6.64 (0)	0-6.01 1-6.01 2-5.66	Add: 0.18 Dom: 0.17	R ² : 0.19			

Acknowledgements

would like to thank the USDA-ARS for funding this project and Monsanto for financial support of my graduate Fellowship For further information: jrrecker@ncsu.edu

– Selfing two generations and harvesting individual F_2 ears