

Cotton Growth and Photosynthetic Acclimation to Phosphorus Nutrition and CO₂ Enrichment

Shardendu K. Singh^{1&2}, Girish Badgujar^{1&3}, Vangimalla R. Reddy¹, David H. Fleisher¹, Dennis Timlin¹
¹USDA ARS, Crop Systems and Global Change Laboratory, Beltsville, MD; ² Wye Res. and Educ. Ctr., Univ. of Maryland, Queenstown, MD; ³Asian Institute of Technology, Thailand

Introduction

- Phosphorous is a major limiting factor for cotton growth and development particularly in acidic soils.
- The availability of soil nutrients such as phosphate (Pi) exerts a major control over plant response to rising atmospheric CO₂ concentration.
- Most of the previous studies in cotton have considered nutrients other than Pi, and its interaction with elevated CO₂ (eCO₂) has received little attention.
- In general eCO₂ stimulates plant growth and photosynthetic processes, whereas Pi stress has an opposite effect.
- Moreover, previous studies using long term elevated CO₂ indicated varying degree of photosynthetic acclimation/down regulation in cotton.
- Regardless of the acclimation response, increased growth and biomass production were also evident in the same studies at elevated CO₂.
- Studies on effect of the long term eCO₂ on sensitivity of the cotton growth and photosynthesis are limited.

Objective

To determine the interactive effect of Pi supply and atmospheric CO₂ concentrations on cotton growth, development and photosynthetic processes.

Materials and Methods

- Twenty cotton (cv. DP 555) plants were grown in each of six controlled environment chambers in 2011.
- The chambers were maintained at a day/night temperature of 30/22 °C and 800 μmol m⁻² s⁻¹ photosynthetic photon flux density (PPFD, 15 h d⁻¹).
- Plants were irrigated with full strength Hoagland's nutrient solution, except Pi concentration which, varied as 0.20 (optimum), 0.05 and 0.01 milimole (mM) at two levels of CO₂ [400, ambient (aCO₂); and 800, elevated (eCO₂) μmol mol⁻¹].
- The P_{net} was measured and light (LRC) and CO₂ (CRC) response curves were developed using a Li-Cor 6400 (Li-Cor Inc., Lincoln, Nebraska, USA). Same leaves were used for tissue phosphorous (P) analysis.
- 5. The light saturated maximum Pnet (Pnet_{max}) and quantum yield (Φ) from LRC, and carboxylation efficiency (V_{Cmax}) from CRC were computed.
- Plants were harvested three times (6 plants twice and 8 plants at the end) during the experiment and separated into leaves, stem, fruits and roots.

Measurements

Fig. 1 . Leaf Pi content versus photosynthesis at ambient (aCO₂) and elevated (eCO₂) concentration.

Fig. 2. Leaf P content versus parameters of photosynthetic capacity. Unfilled and filled symbols are aCO₂ and eCO₂,respectively.

Measurements cont.

Fig. 3. Effect of CO₂ concentrations and Pi on plant height and total dry biomass

Fig. 4. Effect of CO₂ concentrations and Pi on biomass partitioning

Results

- 1. Growth and photosynthesis declined drastically with decreased Pi (Fig. 1 & 3).
- 2. When measured at growth CO_2 concentration, plants grown at eCO_2 had higher Pnet but lower leaf P content compared to plant grown at aCO_2 (Fig. 1).
- 3. The eCO₂ failed to alleviate the negative effect of severe Pi stress on Pnet.
- 4. The Pnet_{max}, Φ and V_{Cmax} increased linearly with leaf P content (Fig. 2).
- 5. A minor increase in Pnet_{max} and quantum yield at eCO_2 occurred only at high leaf P content (Fig. 2A), however V_{Cmax} was lower or unaffected at eCO_2 (Fig .2C).
- Irrespective of growth CO₂, Pi stress caused decrease in plant height (45-55%) (Fig. 3A) and biomass (75-80%) (Fig. 3B).
- 7. Pi stress caused more dry matter partitioning towards the roots (Fig. 4A) but lesser towards the leaves, stems and fruits (Fig. 4B for Fruits).
- 8. Regardless of Pi nutrition, the eCO_2 increased total dry biomass of cotton.

Conclusions

- 1. The reduced growth and biomass under Pi stress were mainly caused due to slower rate of stem elongation, leaf area expansion and photosynthesis.
- The photosynthetic processes and reproductive structures were the most sensitive to Pi stress under both current and projected CO₂ environments.
- 3. When measured at growth CO₂, the relationship between Pnet and leaf P content was altered by eCO₃ indicating higher Pnet per unit increase in leaf P content.
- Irrespective of the P supply, photosynthetic acclimation of cotton plants to eCO₂ were evident from the reduced carboxylation efficiency.
- 5. It is notable that eCO₂ did increase Pnet when measured at growth CO₂ and improved quantum yield specially at sufficient phosphorus supply.
- Regardless of Pi nutrition, the observed increase in biomass at eCO₂ was attributed to rapid growth and associated increase in total canopy photosynthesis.

Reference: Barrett, D.J., Gifford, R.M., 1995. Acclimation of photosynthesis and growth by cotton to elevated CO₂: interactions with severe phosphate deficiency and restricted rooting volume. Aust. J. Plant Physiol. 22, 955-963.