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Introduction

Tan spot, caused by the fungus Pyrenophora tritici-repentis (Died.) Drechs. (anamorph
Drechslera tritici-repentis) (Died.) Shoem., is a major disease of wheat (Triticum aestivum L.)
worldwide (Hosford 1982; Wiese 1987). Grain yield losses of 2–50% (Hosford 1971; Hosford
and Busch 1974; Rees et al. 1982; Rees and Platz 1983) and as high as 75% (Rees et al. 1981)
have been attributed to this disease. Tan spot is the fastest growing disease in the Southern
Cone region of South America including Argentina, Brazil, Chile, Paraguay and Uruguay (Kohli
et al. 1992). In Argentina, the disease was found for the first time affecting wheat crops in
the north-central region of Buenos Aires province in the early 1980s (Annone 1985).
Subsequently, the disease has gained predominance among the wheat diseases in most of
the wheat growing areas in the country (Annone 1997; Kohli et al. 1992; Carmona et al.
1999). The increase in the severity of tan spot has been linked with the change in the varietal
composition, and the expansion of the area under conservation tillage practices with
continuous wheat cultivation, which allows the buildup inoculum on the wheat stubble over
time.
Based on the ability to induce necrosis or chlorosis on a set of differential cultivars, isolates
of P. tritici-repentis are classified into eight races. Race 1 isolates can induce necrosis on the
susceptible cultivar ‘Glenlea’ and chlorosis on the differential line ‘6B365’. Isolates that
produce necrosis on ‘Glenlea’ only and chlorosis on ‘6B365’ only were designed as race 2 and
3 respectively. Race 4 isolates do not induce either symptoms in susceptible differential
genotypes and are considered avirulent. Race 5 isolates produce chlorotic symptoms similar
to race 3 but in cultivar ‘Katepwa’. Race 6 combines the virulence of races 3 and 5. Race 7
combines the virulence of races 2 and 5, and race 8 combines the virulences of races 2, 3 and
5 (Lamari et al. 2003).
Three host-specific toxins produced by Pyrenophora tritici-repentis have been identified (Ptr
Tox A, Ptr Tox B, and Ptr Tox C) and sensitivity and susceptibility to their producer races are
each controlled by the same gene (Lamari and Bernier 1989; Orolaza et al. 1995; Gamba et
al. 1998; Effertz et al. 2002). One well-characterized host selective proteinaceous toxin, Ptr
ToxA (Ciuffeti and Tuori 1999; Lamari and Bernier 1989), produced by races 1, 2, 7, and 8
(Lamari et al. 2003), is the main factor causing the necrotic symptom in susceptible wheat
cultivars. Two chlorosis-inducing host-specific toxins, designated as Ptr ToxB (Orolaza et al.
1995), isolated from race 5, and Ptr ToxC (Effertz et al. 2002), isolated from race 1, have been
identified and well characterized.
Reports on the mode of resistance to tan spot in T. aestivum have ranged from qualitative (1

or 2 genes) (Lee and Gough 1984; Lamari and Bernier 1991, Sykes and Bernier 1991) to
quantitative (Nagle et al. 1982, Elias et al. 1989). Number and location of genes for resistance
have been determined in recent years in different germplasm. Genetic studies indicated that
a single recessive gene, Tsr1 (formely tsn1) controls resistance to necrosis caused by races 1
and 2 in both durum and bread wheat and is located on the long arm of chromosome 5B
(Anderson et al. 1999; Faris et al. 1996). In addition Tsr2 (tsn2) on 3BL conferring resistance
to race 3 (Singh et al. 2006), Tsr3 (Tsn3) on 3D (Tadesse et al. 2006a, 2007) and Tsr4 (tsn4) on
3A (Tadesse et al. 2006b) have been identified. Effertz et al. 1999 mapped the gene, tsc1,
controlling insensitivity to toxin Ptr ToxC (race 3) in hexaploid wheat on the short arm of
chromosome 1A. Furthermore, Singh et al. (2007) based on the reactions of T. diccocoides
substitution lines determined that genes for resistance to races 1 and 2, and 3 and 5 were
determined to be in chromosomes 5B and 3B, respectively. Resistance to toxin Ptr Tox A was
located on chromosome 5B. Gurung et al. 2011 using 567 landraces detected resistance to
race 1 on chromosomes 1D, 2A, 2B, 2D, 4A, 5B and 7D explaining 1.3 to 3.1% of the
phenotypic variance, while markers associated with resistance to race 5 were distributed on
2D, 6A and 7D and explained 2.2 to 5.9% of the phenotypic variance.
Faris et al. (1997) in a population derived from crossing the synthetic hexaploid wheat
‘W7984’ and the CIMMYT (International Maize and Wheat Improvement Center) bred hard
red spring wheat ‘Opata 85’ observed that resistance to extensive chlorosis by race 1 in
seedlings was quantitative with a major proportion of the variation controlled by a
quantitative trait locus on chromosome 1AS, a gene with a minor effect on 4AL, and an
interaction between the 1AS gene and a gene in 2DL. Effertz et al. (2001) found that the
major QTL located on 1AS also conferred resistance in adult plants. In addition minor QTLs
associated with resistance were found on chromosomes 1AL, 7DS, 5AL and 3BL of this
population. The same major QTL conferred resistance to race 1 isolates, and the QTL in
chromosome 4AL to a race 3 isolate in seedlings of the ‘W7984’ x ‘Trenton’ population
(Effertz et al. 2001). Friesen and Faris (2004) using seedlings of the same population located
the toxin-insensitivity gene to Prt Tox B produced by race 5 on the short arm of chromosome
2B. Additional minor QTLs were identified on the short arm of chromosome 2A, the long arm
of chromosome 4A and on the long arm of chromosome 2B.

Objective
The aim of this work was to determine the chromosomal location for resistance (expressed
as necrosis and chlorosis) in the population of W 7984 x Opata 85 using two Argentinean
isolates of Pyrenophora tritici-repentis.
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Materials and methods

Plant materials
A selection of 49 RILs from the ITMI (International Triticeae Mapping Initiative) mapping population created by crossing the
synthetic hexaploid wheat `W7984´ with the spring wheat cultivar `Opata 85´ was examined. `W7984´ was generated via a cross
of the Triticum tauschii accession `CIGM86.940´ (DD) with the tetraploid wheat `Altar 84´ (AABB)

Seedling stage examination
The experiments were performed in three environments: at the Facultad de Ciencias Agrarias y Forestales, La Plata (FCAyFLP)
Argentina during 2003 (enviroment1) and 2004 (environment 2) and at the Experimental Station of Los Hornos, Argentina in
2004 (environment 3). For each environment, seeds were germinated in petri dishes and vernalised for 4 weeks at 4-8ºC. For the
first two environments, germinated seeds were planted in 10 L pots in a randomized design with 2 replications for each isolate
(H0019 and H0120, FCAyF). Isolates were selected from a preliminary screening of the parents using 8 isolates, because of the
highest differences in resistance among them, being ‘W7984’ moderately resistant and ‘Opata 85’ susceptible. Eight to ten seeds
were grown in each pot. Pots were fertilized with 50 kg ha-1 N as urea and 50 kg ha-1 P as ammonium diphosphate at sowing and
with 50 kg ha-1 N as urea at tillering. For the third environment germinated seeds were planted with the same design in rows in
the field and fertilized in the same way.
Plants were inoculated with the H0019 and H0120 isolates from the FCAyFLP, La Plata, Argentina. Mycelial plugs from both
isolates were taken from the advancing margin of a 6 days culture of Pyrenophora tritici-repentis on potato dextrose agar
(PDA).These plugs were then placed on petri dishes with V8 medium (150 ml of V8 juices, 3g of CaCO3, 15 g of agar and 850 ml
distilled water) and incubated for 5 days at 20ºC with light alternating (3500 lux dark cycles of 12 h plus the addition of near UV
light (365 nm). At the 6th day of incubation, the aerial mycelium was knocked down with a sterile, bent glass rod. The dishes
were then incubated in continuous light for 24 h. Finally, the dishes were incubated in darkness for another 24 h. The light cycle
simulated conidiophores formation and reduced mycelial fragments while the dark cycle induced completion of the sporulation
process (Platt et al. 1977; Odvody and Boosalis 1982).The conidial harvest was made by flooding the plate with 5ml of sterile
distilled water and dislodging the conidia with a bent glass rod. The resulted suspension was filtered through cheesecloth and
the concentration of inoculum suspension was adjusted to 2×106 and with 0.05% Tween 20 added as a surfactant.
Spores suspension was applied with a hand sprayer until run-off. Plants were inoculated at the two leaf stage. After inoculation,
pots were covered with transparent plastic to maintain wet conditions for 48 hs. Plants were regularly irrigated. Field experiment
was maintained wet by spraying with water for 15 minutes every two hours for three days. Ratings of genotypes for reaction to
tan spot were made 28 days after inoculation as percentage of the leaf area affected by the disease (necrosis and chlorosis) on a
visual basis.

Adult stage examination
Similar experiments as for seedling stage examination were planted in the same way and the same three environments. The
plant material was inoculated with the same isolates and in the same way as for the seedling experiment at the flag leaf stage
(GS 37-39, Zadoks et al. 1974). After inoculation the conditions were similar to the seedling stage experiment for the first 48 h.
As for the seedling stage, plants were fertilized and the pots experiment was regularly irrigated. Disease reaction was visually
estimated as a percentage of the leaf affected by the disease (necrosis and chlorosis) at GS 82

QTL mapping
An extensive RFLP map exists for the W-7984/Opata 85 RI population (http://wheat.pw.usda.gov/ggpages/map_summary.html).
Markers were used to indentify associations with percentages of disease severity. The computer program QGENE was used to
perform QTL analysis (Nelson 1997). Single marker regression map was applied

Results and discussion
At seedling stage ‘W7984’ was moderately resistant to resistant and ‘Opata 85’ moderately susceptible to susceptible. At the
adult stage ‘W7984’ was moderately resistant and ‘Opata 85’ moderately susceptible to susceptible. The RILs population
segregated for reaction to both isolates at both growth stages. Most of the lines have little necrosis but varying in chlorosis
percentage according to its level of resistance.
Analysing the disease scores, no clear cut deviations allowing a qualitative approach were detected either at seedling or adult
stage for the three environments and the two isolates used.
Investigating the RILs at the seedling stage, a locus coming from ‘W7984’ was discovered on the short arm of chromosome 6A
linked to Xksuh4c with LOD scores between 1.90 and 3.76 when considering isolate H0019 for two of the environments
(environment 1 and 3) and on the same chromosome linked to the same marker for isolate H0120 with LOD scores between
2.25 and 4.29. When considering the average of the three environments for each isolate the same locus was detected on
chromosome 6A with LOD scores of 3.76 and 5.87 for isolates H0019 and H0120 respectively (Fig.1). No other consistent loci
were detected at seedling stage. In addition no consistent loci through the three environments were detected on adult stage
either. No consistent QTLs were determined in adult stage
Several genes have been identified conferring resistance to the pathogen in Triticum aestivum populations. It is known that
isolates of Pyrenophora tritici-repentis are classified into at least 8 races, however new races can risen. Genes or QTLs effective
against races 1; 2; 3 and 5 have been identified earlier. No genes have been identified at present effective against races 4
(avirulent on differential lines), 7 and 8.
Using the same material as in the present work Faris et al. (1997) observed that resistance to extensive chlorosis by race 1 in
seedlings was quantitative with a major proportion of the variation controlled by a quantitative trait loci on chromosome 1AS, a
gene with a minor effect in 4AL, and an interaction between the 1AS gene and a gene in 2DL. Effertz et al. (2001) also found that
the major QTL located on 1AS conferred resistance in adult plants. In addition minor QTLs associated with resistance were found
on chromosomes 1AL, 7DS, 5AL and 3BL of this population. The same major QTL conferred resistance to race 1 isolates, and the
QTL on chromosome 4AL to a race 3 isolate in seedlings of the W 7984 x Trenton population (Effertz et al. 2001). Friesen and
Faris (2004) using seedlings of the same population located the toxin-insensitivity gene to Prt Tox B produced by race 5 on the
short arm of chromosome 2B. Additional minor QTLs were identified on the short arm of chromosome 2A, the long arm of
chromosome 4A and on the long arm of chromosome 2B.
One of the isolates used in this work was race 1 (H0019), the other is not virulent on the set of diferential lines (that would
indicate that is race 4) (Moreno et al unpublished data). However did not amplify for Tox b gene, according with suggested
primer by Andrie et al. (2007). The H0019 isolate was assigned as race 1, it produced necrosis on both ‘Glenlea’ and ‘Katepwa’,
and chlorosis on ‘6B365’. Chlorosis on ‘6B365’ can be attributed to the production of Ptr Tox C (Effertz et al. 2002), however the
gene(s) has not been characterized and it is not possible to confirm this result by PCR at the moment (Moreno et al.,
unpublished data).
The isolate H0120 considered as race 4, based in the absence of symptoms on the cultivars and lines selected, did not amplified
for the Ptr-tox b, however amplified for the Tox A gene, however phenotypically was considered as non-pathogenic on the
differential set of cultivars. If we consider that we need the Ptr-tox b amplification to assign an isolate to race 4, we can consider
isolate H0120 as a potential new race.
Although isolate H0019 was considered as race 1, as it was said it is not possible confirm this result by PCR, and as chromosomal
location for this race in this population has been established mainly on chromosome 1AS, we speculated that it could belong to
a new race. In addition it is known that new races can appear adding new lines to the differential set.
P. tritici-repentis-wheat interaction exhibits a complex race structure. Many researches showed discrepancy between the
phenotypic findings and the PCR determination for P.tritici-repentis Tox A and Tox B genes (Ali et al. 2010; Andrie et al. 2007;
Lepoint et al. 2010; Moreno et al. unpublished data). Races determination of the pathogen in Argentina is recent (Moreno et al.
unpublished data). According to the results of this work, we suggest the possibility that both isolates belong to new races of the
pathogen

Fig.1 QTL for resistance to Pyrenophora tritici-repentis in the synthetic wheat W7984
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