

Biochar and fertilization levels on plant production and

N losses.

il: isapereira@ucdavis.edu

Engil Pereira, Rafaela Conz, and Johan Six

Dept. of Plant Sciences, Univ. of California, Davis, One Shields Ave, 95616 Davis, CA.

Introduction

The incorporation of biochar in soils has been proposed as an approach to reduce N losses via leachate and nitrous oxide (N₂O) emissions. Alkaline biochars increase soil pH and consequently cation exchange capacity (CEC). Increases in soil CEC can prevent N losses via leachate and therefore, reduce groundwater N contamination.

Concomitantly, an increase in soil pH also leads to complete denitrification of nitrate, where N₂O is reduced to N₂. Therefore, biochar could also decrease N losses via N₂O by promoting the complete denitrification process.

These responses may be limited by the type of biochar and the amount of N applied during the fertilization events. In this study, we will investigate whether biochar alters N losses (i.e.: N leachate and N₂O) and plant growth across a gradient of N fertilization rates. We will also investigate two types of biochar: A walnut shell (WS) biochar produced at high temperatures and a pine chip biochar (PC) produced at moderate temperatures (Table 1).

Hypotheses

- · Increases in soil CEC promoted by biochar amendment will decrease N lost via leachate. We predict that this effect will be more pronounced at low N fertilization rates, since soil may reach a saturation of N retention at high fertilization rates.
- We also hypothesize that increases in soil pH will promote denitrification and therefore decrease N₂O emissions.
- · WS biochar may induce more pronounced effects compared to PC biochar due to its higher pH and significant effect on soil CEC (Figure 1).

p<0.05).

Materials and Methods						
Table 1. Soil characteristics:		We carried out a greenhouse				
Yolo Silt Clay Loam		experiment to compare two biochar				
C (%)	1.22	materials (10 tons per hectare) and five N fertilization treatments. We				
N (%)	0.13	applied 0%, 25%, 50%, 75%, and 100%				
Soil pH	7.5	of 225 kg of N per hectare. We used				
Sand (%)	18.8	feather meal (organic) as N source.				
Silt (%)	47.7	The indicator crop was lettuce				
Clay (%)	33.6	(Lactuca sativa) and was cultivated for two growing seasons.				
		two growing seasons.				

Biochar	Source Material	Pyrolysis T°C	Biochar CEC (meq 100g ⁻¹)	Biochar pH
WS	Walnut shell	900	33.4	9.7
PC	Wood Chips	550	3.2	7.9
A	В			

WS biochar decreased N lost via leachate only at 0 and 25% N fertilization rate

N₂O fluxes

Plant Biomass

Conclusions

- Based on our results, biochar can work as an approach to decrease N losses via leachate, but only at low N fertilization rates.
- Under the conditions of this study, biochar had minimal and inconsistent effects on N2O emissions and plant growth.

Acknowledgements

The authors would like to thank the National Council for Scientific and Technological Development (CNPq/Brazil) for scholarship support to Engil Pereira and also the California Energy Commission for funding this study.

