

Effects of Residue Cover and Nitrogen Application Method **On Strip-till Sugar Beet Production**

Amber Moore¹, Don Morishita¹, Oliver Neher¹ and David Tarkalson²

(1)Plant, Soils, and Entomological Sciences, University of Idaho, Twin Falls, ID (2)USDA-ARS, Kimberly, ID

Introc	luctio

Strip-till issue #1 – Chaff trails behind small grain combines ► Low residue areas \succ Droughty, greater potential weed growth High residue areas >Potential for fertilizer and pesticide binding, increased plant disease pressure, slower plant growth, uneven germination Strip-till issue #2 – Applying nitrogen fertilizers Broadcast \succ Easy, use existing spreaders ➢ Volatilization losses ➤ Binding with residue ➤Shank Added cost to outfit strip-till unit ► Avoid volatilization and residue binding issues

➢ Potential for seedling burn

➢ Project Goals:

Determine how residue level, nitrogen rate, and nitrogen placement impacts yield, beet quality, plant available N in the soil, and N uptake

Results – Residue Cover					
7 tons /acre	11 tons /acre	15 tons /acre			
	<image/>	<image/>			

Visual differences in top growth for strip-tilled sugar beets grown in Kimberly, Idaho in 2011, as affected by oat residue cover amount.

 Table 1. Effect of small grain residue level on strip-tilled sugar beet

production parameters in 2011, averaged across N rates and N fertilizer application method

Table 2. Effect of N rate, N application method, and small grain residue leve on strip-tilled sugar beet production parameters in 2009.N rate (lb N/acre)Soil + fertilizer N (lb N/acre)Residue cover (ton/acre)Beet Wt. (lb/beet)	Results – N rate						
N rate (lb N/acre) fertilizer N (lb N App. Method (ton/acre) Yield (ton/acre) Beet Wt.	Table 2. Effect of N rate, N application method, and small grain residue level on strip-tilled sugar beet production parameters in 2009.						
	N rate (lb	Soil + fertilizer N (lb	•	Residue cover			

N/acre)	N/acre)		(ton/acre)		(lb/beet)		
			1.2	28.1bcde	8.2abc		
71 140		Broadcast	2.7	28.8bcd	8.5abc		
	1/0		5.3	19.4e	5.2c		
	140		1.2	30.0bc	8.4abc		
		Shank	2.7	29.4bcd	9.0abc		
			5.3	38.7a	10.8ab		
			1.2	26.0bcde	8.3abc		
		Broadcast	2.7	28.2bcde	8.6abc		
110	210		5.3	22.2cde	8.1abc		
142	210		1.2	32.4ab	12.5a		
		Shank	2.7	28.3bcde	7.5bc		
		5.3	20.9de	5.6c			
p value 0.003 0.138							
Table 3. Effect of N fertilizer rate on strip-tilled sugar beet production parameters in 2011, averaged across application method and residue level.							
N	rate	Soil + fertilizer N	Yie	ld	ERS		
(lb N/acre)		(lb N/acre)	(beet to		(lb sugar/acre)		
0		82	24.4a		8,025a		
47		129	28.2b		9,263b		
124 206		30.	6b	10,043b			
pv	p value 0.0005 0.0002				0.0002		
Results – N application Method							

Determine how residue level impacts soil temperature and soil moisture

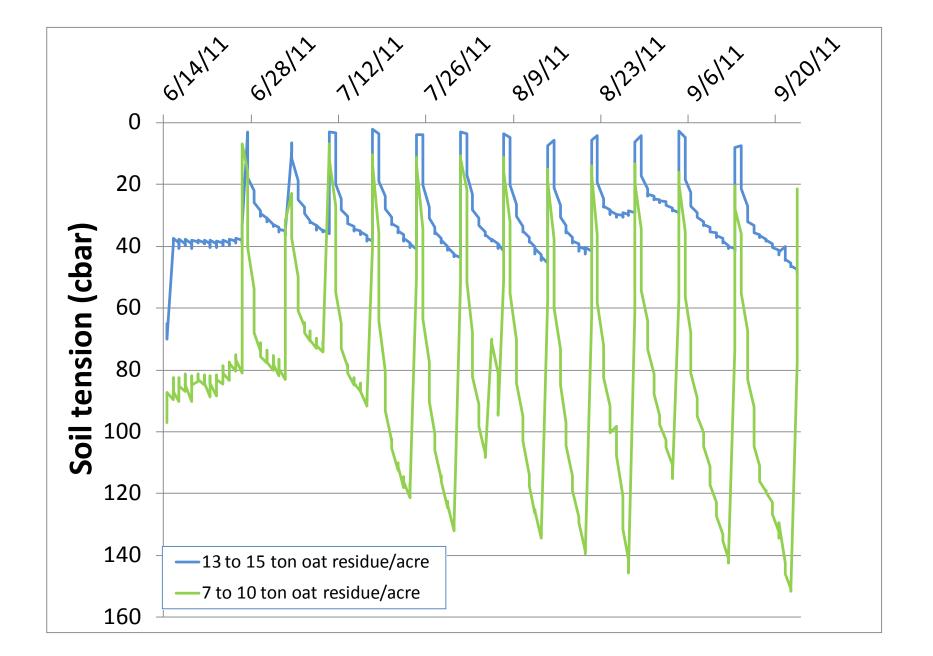
Methods

Experimental design

- ➤3 X 3 X 2 Factorial
 - > 3 residue levels, 3 N application rates, 2 N application methods
- ► Randomized Complete Block Design
- ➢ Four replicates
- ➢Spring strip-till

Residue Cover

- >Wheat residue in 2009, barley residue in 2010, oat residue in 2011
- Establishing residue levels in the fall
 - > Bailed off residue, left standing stubble and finer residue pieces
 - ➤Weighed bails to target levels
 - ➤ Hand spread over plots
 - Removed 1 ft. by 1 ft. square of residue from each, weighed to estimate residue cover amount


➤Two N application methods

- ➢ Broadcasted granular urea
- Shanked-in liquid urea ammonium nitrate
- > 6 8 inch depth, Capstan fertilizer applicator
- Three fertilizer N rates, including a control
 - \geq 0, 4, and 6 lbs N/ton expected sugar beet yield, and including plant available N in the soil

➢ Response variables

- ► Beet yield and quality
- Soil N (1 ft. depth, measured post-harvest)
- ➢ Plant N uptake
 - \geq 8 tops per plot removed prior to harvest
 - > Beet pulp from beets submitted for quality analysis

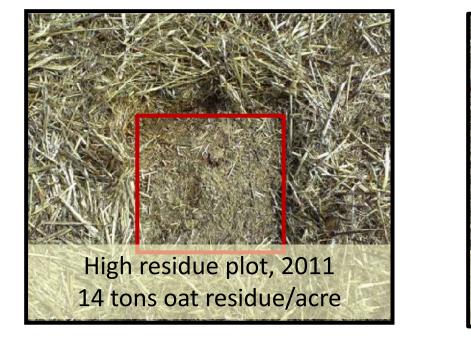
Residue cover (ton/acre)	Beet yield (ton/acre)	Sugar content (%)	Beet Wt. (Ib/beet)	Stand count (# beets/100 ft.)
7	30.3 a	18.3	11.9 a	236
11	27.8 ab	18.4	10.4 b	221
15	27.1 b	18.4	10.1 b	227
p value	0.035	0.539	0.004	0.393

Figure 1. Soil moisture tension, as affected by oat residue cover level for strip-tilled sugar beets.

➢ Broadcasting vs. Shank

- > Broadcasting urea significantly reduced stand counts in both 2009 and 2011, in comparison to shank treatment (Table 4)
 - >Lower stand counts likely contributed to significantly lower beet yields in 2009, as beet weight was not affected (Table 4)
- >Otherwise, no effect on sugar beet production parameters (sugar content, Brei nitrate content, plant available N in the soil, plant N uptake, etc.) Suggests that shanking in N may prevent yield losses related to reduced stand count, in comparison to broadcasted applications of N

 Table 4. Effect of N fertilizer application on specified strip-tilled sugar beet


production parameters in 2009, averaged over residue level.

 \succ Pulp and tops analyzed for total N

Continuous soil temperature 3 and 6 inch depths – Hobo meter Continuous soil moisture/tension measured at 12 inch depth – Hansen meter

>All meters placed in low shank N plots, between rows in areas of greatest residue

- ➤ 2010 data not included, due to clogged residue managers ➢ Issue on high residue plots >Uneven dispersal of residue within plots
 - Increased potential for variability in growth

Low residue plot, 2011 7 tons oat residue/acre

Results – Residue Cover

Significant year effect, related to differences in residue levels between years \geq 2009: 1 – 5 tons residue/acre; 2011: 7 – 15 tons residue/acre) \geq 2009, Lower residue levels (1 – 5 ton/acre)

Significant yield losses for broadcast treatment with increasing residue levels (Table 2)

 \succ Related to both beet size and stand counts (Table 2)

≥2011, Higher residue levels (7 - 15 ton/acre)

Significant yield losses with higher residue levels (Table 1) > Beet size decreased with increasing residue levels, while stand counts were not affected (Table 1) \succ Residue level effects related to soil moisture tension (Figure 1) \blacktriangleright Greater moisture under 15 ton/acre compared to 7 ton/acre >Increased moisture may have decreased beet size, due to greater nitrate leaching, poor root development, and decreased soil

Results – N rate

Significant year effect, related to differences in fertilizer N rate between years

 \geq N application rate adjusted yearly, based on soil test N

 \geq 2009, Higher N rates (71 and 142 lb N/acre)

 \succ Significant N rate X application method interaction (alpha = 0.05)

Shanked-in Urea Ammonium Nitrate Solution

>71 lb N/acre rate supported optimal beet growth (Table 2)

► Beets growth stunted at 142 lb N/acre rate

>Beet weight significantly reduced with increasing N rate (Table 2)

Broadcasted Urea

>Yields did not increase with application of broadcasted N in 2009 (Table 2)

 \geq 2011, Lower N rates (47 and 124 lb N/acre)

 \geq No N rate X application method interaction (alpha = 0.05) Significant increase in yield with application of N at 47 lb N/acre (Table 3) ≻Yield increases for the high N rate (124 lb N/acre) were not signification in comparison to 47 lb N/acre rate (Table 3)

N Application Method	N rate (lb N/acre)	Stand (# beets/100 ft.)
Draadaast	71	117a
Broadcast	142	81b
p value		0.0032
Shank	71	156
	142	148
p value		0.338

 Table 5. Effect of N fertilizer application on specified strip-tilled sugar beet

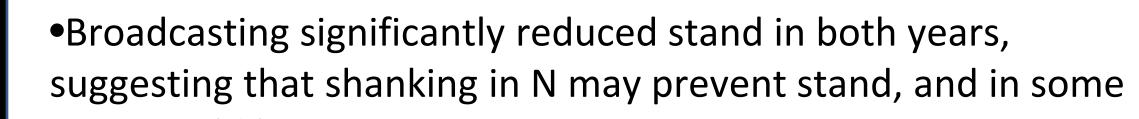
production parameters, averaged over N rate and residue level.

Year	N Application Method	Yield (beet ton/acre)	ERS (lb sugar/acre)
	Broadcast	25.6b	6941a
2009	Shank	30.0a	8154b
	p value	0.0024	0.0014
	Broadcast	29.4	9695
2011	Shank	29.4	9611
	p value	0.961	0.813

Summary

•Residue cover, N application method, and N application rate can impact sugar beet production

•Lowered yields at residue levels above 6.9 ton/acre and in cases of high N rates


47 lb N/acre

Visual differences in top growth for strip-tilled sugar beets grown in 2011, as affected by N application rate.

cases, yield losses

•Shanking in N at rates of 140 lb N/acre or higher may cause yield

losses