ECONOMIC RISK & PROFITABILITY OF SOYBEAN SEED TREATMENTS AT REDUCED SEEDING RATES

means. These random draw parameters were used in determining the probability of increasing profit ha⁻¹ or breaking-even at the pre-set seeding rates and EOSR, for each seed treatment (ex. CM-98,800 seeds ha⁻¹), over a pre-determined "base case". In addition, the average profit ha⁻¹ increase was determined for positive, negative, and all outcomes. The base case is untreated seed at 345,800 seeds ha⁻¹, resulting in 20 comparison to the "base case" (Table 1).

Adam P Gaspar^{*1}, Shawn P Conley¹, & Paul Mitchel² (1)Dept. of Agronomy, University of Wisconsin-Madison (2)Dept. of Ag. & Applied Economics, University of Wisconsin-Madison *Corresponding Author: agaspar@wisc.edu

- Economically Optimal Seeding Rates (EOSR): • UTC = 260,000 seeds ha^{-1}

seeding rate

- ApronMaxx = 261,000 seeds ha⁻¹
- CruiserMaxx = 210,000 seeds ha⁻¹

	Break-Even Probability	Positive Outcomes	All Outcomes	Negative Outcomes
		Avg. Profit Increase (\$ ha ⁻¹) Over "Base Case"		
UTC-296,400	0.89	11	9	-9
UTC-247,000	0.76	18	8	-21
UTC-197,600	0.46	18	-14	-41
UTC-148,200	0.08	13	-84	-93
UTC-98,800	0.00	18	-267	-267
AM-345,800	0.50	61	1	-59
AM-296,400	0.55	62	10	-54
AM-247,000	0.55	60	10	-52
AM-197,600	0.42	51	-14	-61
AM-148,200	0.13	37	-88	-106
AM-98,800	0.00	31	-277	-277
CM-345,800	0.54	62	8	-56
CM-296,400	0.63	68	25	-49
CM-247,000	0.70	72	37	-46
CM-197,600	0.70	72	36	-48
CM-148,200	0.52	60	0	-69
CM-98,800	0.09	37	-136	-154
UTC-EOSR	0.81	17	10	-18
AM-EOSR	0.56	61	12	-52
CM-EOSR	0.71	73	38	-47

Table 1. Economic Risk Analysis. Break-Even Probabilities for various Seed Treatment by Seeding Rate Combinations.

Economic Risk Analysis

- CruiserMaxx showed break-even probabilities >0.50 for all seeding rates except at 98,800 seeds ha⁻¹.
- CruiserMaxx at 345,000 seeds ha⁻¹ had a break-even probability of 0.54 and averaged a \$8 ha⁻¹ profit increase over the base case.
- CruiserMaxx and ApronMaxx achieved the highest break-even probability and profit ha⁻¹ increase at their EOSR.
- UTC showed the largest profit ha⁻¹ increase at it's EOSR, but the highest break-even probability was at 296,400 seeds ha⁻¹.

Preliminary Conclusions

- Lower seeding rates (<247,000 seeds ha⁻¹) showed increased yields and profitability with CruiserMaxx.
- ApronMaxx and UTC showed no difference's in yield or profitability at any seeding rate.
- At higher seeding rates (>247,000 seeds ha⁻¹) yield and profitability was not significantly affected by seed treatment use.
- ApronMaxx and UTC required higher seeding rates (>247,000 seeds ha⁻¹) to achieve break-even probabilities >0.50 and their EOSR showed the largest average profit ha⁻¹ increase over the base case.
- CruiserMaxx showed break-even probabilities >0.50 for all seeding rates except at 98,800 seeds ha⁻¹, but the lowest risk (0.71) and highest average profit ha⁻¹ increase (\$38 ha⁻¹) was achieved at its EOSR, which was 50,000 seeds ha⁻¹ less than ApronMaxx and UTC.

Literature cited

- Esker, P. and S.P. Conley. 2012. Probability of yield response and breaking-even for soybean seed treatments. Crop Sci: 52:351-359.
- De Bruin, J.L. and P. Pedersen. 2008. Soybean seed yield response to planting date and seeding rate in the upper Midwest. Agron. J. 100: 696-703.
- Epler, M. and S. Staggenborg. 2008. Soybean yield and yield component response to plant density in narrow row systems. Online. Crop Management doi:10.1094/CM-2008-0925-01-RS.

