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 We demonstrate the potential of a non-invasive measurement technique for the in situ monitoring of soil physical properties in the field. When soils are regarded as porous and elastic media, sub-surface wave propagation 
can be indicative of the soil status. Such propagation can be initiated by airborne sound through acoustic-to-seismic (A–S) coupling. Measurements of near-surface sound pressure and acoustically induced soil particle 
motion can be exploited to estimate the pore-related and elastic properties of soils. Measured data were compared with model predictions based on wave propagation in layered homogeneous isotropic poroelastic media 
described by linear Biot-Stoll theory. Soil properties were estimated through an optimization process minimizing the differences between the measurements and predictions. The fitted soil characteristics are air 
permeability, porosity, P-/S-wave speeds (related to bulk and rigidity moduli) and a loss factor. Layer depth was also estimated for multi-layered samples.
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Field soil strength measured by a penetrometer 
a n d  d e d u c e d  b y  o p t i m i za t i o n s .  T h e  
penetrometer data were collected in an 
Experimental plot 20 m away from the location of 
the acoustic-to-seismic measurement. The solid 
black line is the median of five penetrometer 
readings by assigning 80 kgf to the failed readings 
which are discarded for the separated dash/dot 
black line. The surrounding greyed area shows 
theminimum and maximum readings at each 
depth. The vertical dotted black line was deduced 
under the single-layer assumption during 
optimization; the dashed black line under the 
two-layer assumption; the dashed grey line 
under the three-layer assumption; the solid grey 
line under the four-layer assumption.

Comparisons of the measurement (in grey) and 
the two-layer simulation (in black) based on the 
deduced parameters for a cleared plot at a 
Rothamsted Research experimental site: (a), 
level difference; (b), acoustic-to-seismic 
coupling.

Here F, A*, p, f and b are empirical, adjustable parameters

e is void ratio
σ is the applied pressure
e and σ are related with the compression characteristic
Ψ is the matric potential
Ψae is the air entry potential
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A: Fit assuming net stress = pre compaction stress

B: Fit assuming net stress = zero

Penetrometer resistance

On the premise that  Q= k ρV 2
we fitted
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e is the void ratio
F is the void ratio normalization factor

y  is the air entry potentialae

y is the matric is the matric potential to which 
the soil has dried
σ  applied stress s

A, r,  and ϒ are adjustable parameters
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