

Flowering Time in 5-Azacytidine Mutants of

Oilseed Flax (Linum usitatissimum L.)

Jia Sun, Lester Young and Helen Booker

Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada

Introduction

- Canada is the world's largest producer of flaxseed (average >700,000 tonnes/annum 2000-2010), most of it is produced in Saskatchewan (SK).
- Flaxseed is rich in oil and alpha-linolenic acid
 (ALA), a polyunsaturated n=3 (omega-3) fatty
 acid.
- In Canada, oilseed flax (*Linum usitatissimum* L.) takes 90-125 days to reach maturity.
- SK has a short growing season, 105-135
 frost-free days annually. Frost and freezing
 that occurs during the early fall will reduce
 crop quality and yield.
- Earlier crop maturity can prevent damage from early fall frost to the flax crop.
- 5-azacytidine (5-azaC) is a chemical that
 hypomethylates DNA. It induced early
 flowering and reduced plant height in flax
 cultivar "Royal". Three 5-azaC treated
 epimutant lines RE1, RE2 and RE3 were
 derived. They flowered 7-13 days earlier than
 the original material "Royal".

5-Azacytidine Chemical formula: C₈H₁₂N₄O₅

Objectives

- Study the effect of 5-azaC on oilseed flax flowering time and height.
- Develop early flowering lines suited for short growing season in the Canadian prairies.

Methods

Original Germplasm

CDC line CDC Sorrel

Mutant Royal lines Royal (M₀), RE1, RE2, RE3

Population I: Mutant Population

M₀ CDC Sorrel treated with 5-azaC (2011)

M₁ derived from 5-azaC treatment grown in growth chamber (2011)

M₂ rows grown at high latitude field conditions in a MAD design (2012),100 earliest individuals selected to be M₃ (2013)

M₃ lines grown at high latitude in the field in a MAD design (2013), 100 earliest individuals selected to be M₄ (2014)

Population II: Crossing Population

Reciprocal crosses between:

- CDC Sorrel and Royal;
- CDC Sorrel and 5-azaC treated mutant Royal M₉ lines (RE1, RE2 and RE3) (2011)

F₁ plants grown in the growth chamber (2011)

F₂ rows grown at high latitude in the field in a MAD design, 25 earliest individuals from each row selected to be F₃(2012)

 F_3 lines grown at high latitude in the field in a MAD design(2013), 3 earliest individuals from each line selected to be F_4 (2014)

Results

Population I: Mutant Population

Population II: Crossing Population

2012 F₂'s Days to Flowering

CDC Sorrel
Royal
RE1
RE2
RE3

Conclusions & Future Work

- Variations in DTF and plant height were observed under field conditions in both populations. F₂ rows presented intermediate phenotypes while selected F₃ lines showed intermediate or transgressive phenotypes compared to parental lines (CDC Sorrel and Royal mutant lines).
- 5-azaC increased variability in DTF and plant height which indicates that 5-azaC treatment could induce early flowering in flax.
- Earliest lines were selected from both populations to be advanced in the next year's field tests.
- Future work includes advancement and selection of M₄ and F₄ and mutagenesis of other CDC oilseed flax varieties.
- Other investigations underway include:
 characterization of the Royal epimutants under
 controlled short and long day environments;
 flowering time gene expression studies comparing
 early flowering 5-azaC treated with untreated flax
 lines.

Acknowledgements

Saskatchewan Ministry of Agriculture

References

- 1. Ehrensing D.T. (2008). Flax. Corvallis: Oregon State University.
- 2. Fieldes, M. A. (1994). Heritable effects of 5-azacytidine treatments on the growth and development of flax (Linum usitatissimum) genotrophs and genotypes. *Genome*, 37(1), 1-11.